Triterpenoid Total Synthesis. Part 2. ${ }^{1}$ Synthesis of Glycinoeclepin A, a Potent Hatching Stimulus for the Soybean Cyst Nematode \dagger

Hidenori Watanabe and Kenji Mori*
Department of Agricultural Chemistry, the University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113, Japan

Abstract

Glycinoeclepin A, a natural hatching stimulus for the soybean cyst nematode, was enantioselectively synthesized starting from two chiral building blocks, both of which were obtained by reduction of prochiral 1,3-diketones with baker's yeast. The key reactions are aldol condensation to introduce asymmetry at C-12 and -13 and reductive lactone cleavage followed by aldol-type condensation for c -ring formation.

Cyst nematodes are well known as serious pests of many crops, and their extermination is an important agricultural problem. They generally have a limited host range and the specificity is thought to be based on a response to a chemical hatching stimulus secreted by the host plants. In 1985, Masamune et al. isolated a degraded triterpenoid, glycinoeclepin A, as a potent hatching stimulus for the soybean cyst nematode (Heteropdera glycines Ichinohe) from the dried root of the kidney bean (Phaseolus vulgaris) and determined its structure as $1 .{ }^{2}$ In addition to its strong hatch-stimulating activity for the soybean cyst nematode ($10^{-12}-10^{-13} \mathrm{~g} \mathrm{~cm}^{-3}$), its unusual structure (especially, the four contiguous asymmetric centres at $\mathrm{C}-12$, $-13,-17$ and -20 , and cross-conjugated diene carboxylic acid system) made it an attractive target for synthetic chemists. Up to now, three groups, including ours, have reported its synthesis, ${ }^{3-5}$ and syntheses of simple model compounds were also reported. ${ }^{6.7}$ Herein we describe our total synthesis of compound 1 in detail.

Results and Discussion

Synthetic Plan.-Our planned synthetic route to glycinoeclepin A 1 is convergent as shown in Scheme 1. There are three key steps as follows: (i) asymmetric reduction of prochiral 1,3diketones \mathbf{A} and \mathbf{C} with baker's yeast to give (S)-hydroxy ketones \mathbf{B} and \mathbf{D}, (ii) stereoselective aldol condensation to introduce the C-12 and -13 asymmetry ($\mathbf{E}+\mathbf{F} \rightarrow \mathbf{G}$), and (iii) reductive lactone cleavage and subsequent aldol condensation to construct the C,D-ring system ($\mathbf{H} \rightarrow \mathbf{1}$).

Asymmetric reduction $(\mathbf{A} \rightarrow \mathbf{B})$ with baker's yeast was developed by our group some years ago, ${ }^{8}$ and the hydroxy ketone B was utilized as a chiral starting material for several natural product syntheses. ${ }^{8-10}$ It can be converted into a species \mathbf{E} by bridged-ether formation and four-carbon elongation. Another (S)-hydroxy ketone, D, can also be obtained by reduction of the corresponding 1,3-diketone \mathbf{C} with baker's yeast. In parallel with this work, we studied the asymmetric reduction of 1,3 -diketones of the bicyclo[2.2.2] octane system, and showed the usefulness of baker's yeast as an asymmetric reducing agent. ${ }^{11.12}$ By taking advantage of the bicyclic system D, chirality at the hydroxy and the three methyl groups of the target molecule are thought to be introduced stereoselectively. Intermediate \mathbf{D} can be converted into the bicyclooctanone \mathbf{F} after stereoselective methylation and ring expansion. Aldol condensation of compounds \mathbf{E} and \mathbf{F} gives \mathbf{G} which possesses all of the asymmetric carbons in their desired configuration. Introduction of a two-carbon unit to ketone \mathbf{G}

[^0]gives lactone \mathbf{H}. The precursor \mathbf{H} is thought to be convertible into the target molecule 1 by reductive fission of the lactone carbon-oxygen bond followed by the nucleophilic addition of the resulting ester carbanion to the carbonyl group to generate the six-membered c-ring.

Preparation of the Aldehyde \mathbf{E}.- One of the key intermediates, aldehyde \mathbf{E} was prepared as shown in Scheme 2. Protected ketone $3,{ }^{13}$ obtained from hydroxy ketone 2 (三B) of 97% ee, was treated with lithium diisopropylamide (LDA) and acetaldehyde to give an alcohol 4a, contaminated with a small amount of dehydration product 5 . The hydroxy group of the alcohol 4a was methanesulphonylated and the ester $\mathbf{4 b}$ was then treated with 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) to give the enone 5 in 94% yield from ketone 3 . Reduction of enone 5 with sodium borohydride gave an alcohol 6 (88%), whose ${ }^{1} \mathrm{H}$ NMR data showed it to be a single isomer. Though we have no evidence for the configuration of the newly introduced hydroxy group nor any for the geometry of the olefin, we presumed that it was syn to the t-butyldimethylsiloxy group on the basis of analogy with Masamune's intermediate. ${ }^{3}$ Protection of the hydroxy group of compound $\mathbf{6 a}$ as the 1ethoxyethyl (EE) ether gave compound 6b (98%), and its t butyldimethylsilyl (TBDMS) group was then removed by using tetrabutylammonium fluoride in tetrahydrofuran (THF) to give the alcohol 6 c in 96% yield. Iodotheration was accomplished in 70% yield by reaction of compound $6 \mathbf{c}$ with N -iodosuccinimide (NIS) in acetonitrile to give the iodide 7. Heating of compound 7 with DBU in toluene afforded an olefin $8(95 \%)$, which was treated with 9 -borabicyclo[3.3.1] nonane ($9-\mathrm{BBN}$) and then with $\mathrm{H}_{2} \mathrm{O}_{2}-\mathrm{NaOH}$ to give the alcohol 9 in quantitative yield. Swern oxidation ${ }^{14}$ of alcohol 9 to the corresponding aldehyde 10 was followed by three-carbon elongation using allylmagnesium chloride in THF to give the secondary alcohol 11a (92% in two steps). The hydroxy group of compound 11 was protected as its TBDMS ether $11 \mathrm{~b}(90 \%)$, which was submitted to Lemieux-Johnson oxidation to give the aldehyde $\mathbf{1 2}$ ($\equiv \mathbf{E}$) in 75% yield.

Preparation of the Ketone \mathbf{F}.-The other substrate of the yeast reduction, compound $19(\equiv \mathbf{C})$ was synthesized in 40% yield through 6 steps as follows (see Scheme 3). Conjugate addition of vinylmagnesium bromide to 3-methylcyclopent-2-enone in the presence of tributylphosphine-copper(I) iodide ${ }^{15,16}$ afforded the cyclopentanone 14 in 78% yield. Although we first planned to prepare hydroxy ketone 18 from substrate 13 by Sakurai reaction ${ }^{17}$ followed by ozonolysis and acid treatment, ${ }^{1,12}$ the 1,4 -adduct could not be obtained by the Sakurai reaction. The carbonyl group of compound 14 was protected as the ethylene acetal in 88% yield to give compound 15, hydroboration-oxidation of which gave the alcohol 16 in

Scheme 1 Synthetic plan

$\mathrm{TBS}=\mathrm{SiMe}_{2} \mathrm{Bu}^{\mathrm{t}}, \mathrm{Ms}=\mathrm{S}(\mathrm{O})_{2} \mathrm{Me}, \mathrm{EE}=\mathrm{CH}(\mathrm{OEt}) \mathrm{Me}$
Scheme 2 Synthesis of the Aldehyde E. Reagents, conditions and yields: (a) LDA, MeCHO-THF (quant.); (b) $\mathbf{M s C l}, \mathrm{Et}_{3} \mathrm{~N}^{2} \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (c) DBU, THF (2 steps, 94%); (d) NaBH_{4}, THF-EtOH (88%); (e) $\mathrm{CH}_{2}=\mathrm{CHOEt}, \mathrm{p}$-TsOH (98%); (f) $\mathrm{Bu}_{4} \mathrm{NF}$, THF (96%); (g) NIS, MeCN, room temp. (70%); (h) DBU, PhMe, reflux (95%); (i, $9-\mathrm{BBN}$, THF; then $\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{NaOH}$ (quant.); (j) $(\mathrm{COCl})_{2}, \mathrm{DMSO}-\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{Et}_{3} \mathrm{~N} ;(\mathrm{k}) \mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{MgBr}, \mathrm{THF}$ (2 steps 92%) (l) TBSCl, imidazole, DMF (90%); (m) $\mathrm{OsO}_{4}, \mathrm{NaIO}_{4}, \mathrm{Et}_{2} \mathrm{O}$-water $(75 \%$)
quantitative yield. The alcohol 16 was oxidized to the aldehyde 17 by using pyridinium chlorochromate (PCC) and molecular sieves $3 \AA^{18}$ in dichloromethane (87%). Heating of compound

17 with hydrochloric acid in acetone afforded the deprotected aldol condensation product 18 as an exo and endo mixture in 82% yield. Oxidation of compound 18 with PCC gave the

MTPA $=\mathrm{COC}(\mathrm{OMe})(\mathrm{Ph}) \mathrm{CF}_{3}$
Scheme 3 Synthesis of the ketone F. Reagents, conditions and yields: (a) $\mathrm{CH}_{2}=\mathrm{CHMgBr}, \mathrm{Bu}_{3} \mathrm{P} \cdot \mathrm{CuI}$, THF (78%); (b) $\mathrm{HO}\left[\mathrm{CH}_{2}\right]_{2} \mathrm{OH}, p-\mathrm{TsOH}$, $\mathrm{C}_{6} \mathrm{H}_{6}$, reflux $\left(-\mathrm{H}_{2} \mathrm{O}\right)\left(88 \%\right.$); (c) $\mathrm{BH}_{3} \cdot \mathrm{THF}$, then $\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{NaOH}$ (quant.); (d) PCC, mol sieves $3 \AA \mathrm{CH}_{2} \mathrm{Cl}_{2}[87 \%$ ($\mathbf{1 6} \rightarrow \mathbf{1 7}$); 81% ($\mathbf{1 8} \rightarrow 19$); 97%
 diol, p - $\mathrm{TsOH}, \mathrm{PhMe}$, reflux ($70-75^{\circ} \mathrm{C}$; $-\mathrm{H}_{2} \mathrm{O}$) (87%); (i) $\mathrm{NaOMe}-\mathrm{MeOH}$; then recryst'n (80%); (j) LDA, MeI, THF-HMPA (97%); (k) LiHMDS, THF-HMPA; then aq. $\mathrm{NH}_{4} \mathrm{Cl}\left(98 \%\right.$); (1) $\mathrm{LiCHBr}_{2}, \mathrm{THF} ;(\mathrm{m}) \mathrm{MeLi}(1 \mathrm{~mol}$ equiv.) BuLi (1 mol equiv.), THF (2 steps, 50%); (n) $\mathrm{NaBH} 4, \mathrm{THF}-\mathrm{EtOH}$ $(96 \%) ;(o) \mathrm{H}_{2}, \mathrm{Pd}-\mathrm{C}, \mathrm{EtOAc}(99 \%) ;(p) \mathrm{CH}_{2}=\mathrm{CHOEt}, \mathrm{p}-\mathrm{TsOH}$ (quant.): (q) $\mathrm{NaH}, \mathrm{MeI}, \mathrm{THF}(94 \%) ;(\mathrm{r}) \mathrm{NaH}, \mathrm{TMSCl}, \mathrm{Et} \mathrm{t}_{3} \mathrm{~N}, \mathrm{THF}(99 \%)$.
substrate of the yeast reduction, the dione $\mathbf{1 9}(\equiv \mathbf{C})$ in 81% yield.
Unfortunately, dione 19 was unstable in water even at pH 7 and competitive hydrolysis to give the corresponding keto carboxylic acid diminished the yield of the alcohol 20a to 34% under the conditions reported for the reduction of compound \mathbf{A}^{8} or other bridged bicyclic compounds. ${ }^{11.12}$ To increase the ratio of the desired reduction product, a larger amount of baker's yeast (130 g of dry yeast $/ 1 \mathrm{dm}^{3}$ of water) was used for the reduction of a small amount of the substrate (4 g). Furthermore, addition of the substrate to the medium was divided into four portions (see Experimental section). By these improvements compound 20a was obtained in acceptable yield (58%).

Though the exo-isomer could not be detected on TLC during the reaction, a small amount appeared after working up. We believe it was formed by isomerization of compound 20a by retroaldol-aldol condensation.

The absolute configuration of compound 20a was determined to be $1 R, 4 S, 6 S$ by the fact that the CD spectrum of compound 31, which was derived from the intermediate 21b by dehydration followed by deprotection, showed a positive Cotton effect $[\Delta \varepsilon(308 \mathrm{~nm})+17.3] .{ }^{19}$

The enantiomeric purity of compound 20 a was estimated to be $80-87 \%$ ee by HPLC analysis of the corresponding (R)- and (S)- α-methoxy- α-trifluoromethyl(phenyl)acetate (MTPA ester) 20b, ${ }^{20}$ and it could be enhanced to 100% ee by recrystallization [m.p. $56.5-57.5^{\circ} \mathrm{C}$ (from hexane-diethyl ether)]. In our syn-
thetic route, however, optical enrichment by recrystallization could be achieved more effectively at a later stage, and we therefore employed the alcohol 20a of 82.5% ee directly. After conversion of the alcohol 20a into its acetate 20c in the usual manner [acetic anhydride, 4-(dimethylamino)pyridine (DMAP)-pyridine, 93% yield], the carbonyl group of the acetate 20c was protected as its o-xylylene- x, α^{\prime}-dioxy acetal to give compound 21a in 87% yield. This protective group has the merit of being removable by neutral catalytic hydrogenolysis ${ }^{21-}$
${ }^{23}$ and is thought to be suitable for avoiding undesired isomerization of compound 28a by retroaldol-aldol condensation during the deprotection process $(\mathbf{2 7} \rightarrow \mathbf{2 8 a})$. The acetyl group was removed by treatment of compound 21a with sodium methoxide in methanol to give the free alcohol 21b, which was readily purified to 100% ee by recrystallization [80% yield after recrystallization, m.p. $102-102.5{ }^{\circ} \mathrm{C}$ (from hexane- ethyl acetate)]. Oxidation of the alcohol 21b with PCC and molecular sieves $3 \AA^{18}$ in dichloromethane gave the ketone 22 in 97% yield. When the latter compound was treated with LDA and iodomethane in THF-hexamethylphosphoric triamide (HMPA) at -10 to $0^{\circ} \mathrm{C}$, methylation took place from the exoface and compound 23 was obtained as the sole product (97%). In order to ensure that the newly introduced methyl group was in the correct configuration corresponding to the methyl group on the side-chain of $\mathbf{1}$, our target compound, compound $\mathbf{2 3}$ was enolized by treatment with lithium hexamethyldisilazide (LiHMDS) in THF ($40^{\circ} \mathrm{C} ; 10 \mathrm{~h}$) and then the resulting enolate was protonated with aq. $\mathrm{NH}_{4} \mathrm{Cl}$ at -15 to $0^{\circ} \mathrm{C}$ to give an
epimer 24 (98%). This alkylation-epimerization process was quite stereoselective, and in both reactions the C-3 epimer of the products was not detected. In addition to that, it should be noted that the second enolization step was quite slow and LDA instead of LiHMDS gave poor results. Ring expansion of compound 24 to give the bicyclooctanone 26 was achieved by Nozaki's method ${ }^{24}$ with a small modification because the yield was only 26% when his original procedure was employed. In Nozaki's report, an intermediate dibromo alcohol was treated with butyllithium (2 mol equiv.), while we used one mol equiv. each of methyllithium and butyllithium (see Experimental section). ${ }^{1} \mathrm{H}$ NMR study of the intermediate 25 showed its hydroxy group to be highly sterically hindered and stabilized by strong hydrogen bonding with the acetal oxygen. Indeed, its proton exchange with $\mathrm{D}_{2} \mathrm{O}$ was very slow ($T_{\frac{1}{2}} c a .1 .5 \mathrm{~h}$) and it shows long-range coupling with $\mathrm{CH} \mathrm{Br}_{2}(J 2 \mathrm{~Hz})$; because of that, when only butyllithium was used, metal-halogen exchange was thought to take place prior to alkoxide formation, ${ }^{24}$ which decreased the yield. On the other hand, methyllithium is sterically more compact, and its ability to cause metal-halogen exchange is lower than that of butyllithium. So we first added one mol equiv. of methyllithium for alkoxide formation prior to the addition of another mol equiv. of butyllithium. By these modifications, the yield was raised to 50%. The structure of compound 26 was confirmed by $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR measurement, and a regioisomer in which the methylene group was inserted at an undesired position was not isolated.
Reduction of the ketone 26 with sodium borohydride in THF-ethanol gave the equatorial alcohol 27 (96%). As we expected at this stage of the synthetic plan, deprotection of o -xylylene- α, α^{\prime}-dioxy acetal 27 proceeded quite cleanly to afford hydroxy ketone 28a by hydrogenolysis $\left(\mathrm{H}_{2} / \mathrm{Pd}-\mathrm{C}\right.$ in ethyl acetate) in almost quantitative yield. In addition, it should be noted that all the intermediates 21b-27 were crystalline by virtue of the nature of the o-xylylene- α, α^{\prime}-dioxy acetal group. Protection of the hydroxy group of compound 28a as its EE ether gave compound 28b in quantitative yield, which was subsequently methylated by treatment with sodium hydride and iodomethane in THF to give compound $29(\equiv \mathbf{F})$ in 97% yield. This methylation was also stereoselective and the isomer 32 could not be detected.

Completion of the Synthesis of Glycinoeclepin A.-With both intermediates (compounds 12 and 29) in hand, we tried the key aldol condensation. In a model study, shown in Scheme 4., the

Scheme 4 Model study on aldol condensation. Reagents, conditions and yield: LDA, THF, $-78^{\circ} \mathrm{C},(94 \%)$.
lithium enolate of ketone 33 reacted smoothly with aldehyde 34 and the secondary alcohol 35 was obtained with high stereoselectivity in 94% yield. Under the same conditions, however, reaction of substrates 12 and 29 did not give the desired hydroxy ketone 36a. At the same time, we observed that enolate formation from compound 29 was slower than that from ketone 33 and gave unknown by-products. These results suggest that the endo-face of compound 29 was so sterically crowded that the newly generated endo-methyl group made the product 36a unstable. We then employed the zinc enolate to stabilize the aldol product according to House's method. ${ }^{25}$ Compound 29 was enolized by being refluxed with sodium
hydride in THF for 15 h and was then trapped with chlorotrimethylsilane (TMSCI) to give the bis-ether 30 in 99% yield. The zinc enolate was generated by treatment of compound 30 with methyllithium and zinc chloride in diethyl ether, which reacted successfully with the aldehyde 12 at $-78^{\circ} \mathrm{C}$ to give 3:2:2 mixture of products $\mathbf{3 6 a}(\equiv \mathbf{G}$), 12 and 32. As this compound was too unstable to be isolated by silica gel or neutral alumina column chromatography, the crude product obtained by careful work-up (see Experimental section) was immediately converted into the corresponding diethyl phosphonoacetate $\mathbf{3 6 b}$, which was purified by silica gel column chromatography (Scheme 5). Considering the amounts of the recovered substrate 12 and 32 (42% each), the yield of compound 36b was 99.6%. By utilizing the recovered compounds for the same reaction again, compound 36b was obtained in 82% total yield. Stereoselectivity of the aldol condensation is illustrated in Scheme 6. Electrophilic attack of the aldehyde took place from the less hindered exo-face and the threo-isomer was favoured due to the stability of the intermediate 36'. Treatment of the phosphonoacetate $\mathbf{3 6 b}$ with sodium hydride in THF gave a lactone 37 in 84% yield by the intramolecular olefination reaction. To obtain the precursor of c-ring formation, the lactone should be cleaved. However, attempted direct opening of the lactone by sodium hydroxide in aq. methanol or sodium methoxide in methanol failed. We therefore carried out the following conversions. First, the lactone 37 was reduced with calcium borohydride ${ }^{26.27}$ to give the diol 38a in high yield. This reagent was very effective in this case, but when lithium aluminium hydride, diisobutylaluminium hydride or lithium borohydride was used instead, compound 38a was obtained only in poor yield. Selective acylation of the primary hydroxy group gave mono ester 38b (95% in 2 steps), whose secondary hydroxy group was protected as its [2-(trimethylsilyl)ethoxy]methyl (SEM) ether ${ }^{28}$ to give compound 38c (94%). Then the pivaloyl group was removed (methyllithium-diethyl ether, 93% yield) and the deprotected hydroxy group was oxidized to an aldehyde by Swern's method ${ }^{14}$ to give compound 39 via the allyl alcohol 38d in 96% yield. Further oxidation into the carboxylic acid by using NaClO_{2} in t-butylalcohol and phosphate buffer ${ }^{29}$ was followed by Mitsunobu reaction ${ }^{30}$ to give 2 -(trimethylsilyl)ethyl ester 40a $\left(82 \%\right.$ in 2 steps). For this esterification, N, N^{\prime}-dicyclohexylcarbodiimide (DCC) did not work even in the presence of a catalytic amount of DMAP. Two EE groups and a TBDMS group were removed by treatment of compound 40a with pyridinium toluene- p-sulphonate (PPTS) in aq. methanol to give triol 40b in 83% yield. Swern oxidation ${ }^{14}$ of triol $\mathbf{4 0 b}$ gave triketone $41(86 \%)$ as crystals, m.p. $100-100.5^{\circ} \mathrm{C}$. Quite fortunately, the Baeyer-Villiger oxidation of compound 41 proceeded with excellent selectivity to give compound $\mathbf{4 2}$ ($\equiv \mathbf{H}$) in 99% yield.
Prior to the next key c-ring formation, we studied the reaction using a model compound 46 (see Scheme 7). Reduction of ester lactone 46 using 2 mol equiv. of lithium naphthalenide ${ }^{31}$ in THF at $-78^{\circ} \mathrm{C}$ gave bicyclic diester 47 in 50% yield after treatment of the product with diazomethane for isolation. Treatment of compound 47 with methanesulphonyl chloride and triethylamine in dichloromethane afforded dehydration product $48(61 \%)$, which has the same C,D-ring system as that of glycinoeclepin A. However, compound 42 (Scheme 5) gave a complex mixture under the same conditions. We supposed that a bridged ether adjacent to the carbonyl group on the A-ring was also reactive and competitive side-reactions took place. We then chose lithium dimethylcuprate as an electron source with a smaller redox potential $-E_{\frac{1}{2}}=0.159 \mathrm{~V}$, cf. $-E_{\frac{1}{2}}$ of naphthalenide, 1.98 V . It is known that cuprate reduces γ -acetoxy- α, β-unsaturated ketones, ${ }^{32}$ and more recently, Takano et al. reported the same type of reaction as ours when using this

TMS $=\mathrm{SiMe}_{3}, \mathrm{SEM}=\mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{SiMe}_{3}$

Scheme 5 Completion of the glycinoeclepin A synthesis. Reagents, conditons and yields: (a) $\mathrm{MeLi}, \mathrm{ZnCl}_{2}, \mathrm{Et}_{2} \mathrm{O} ;(\mathrm{b})(\mathrm{EtO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CO} \mathrm{C}_{2} \mathrm{H}, \mathrm{DCC}$,

 $\mathrm{Bu}^{\mathrm{t} O H}$-water; (j) TMS[CH2 $]_{2} \mathrm{OH}$, DEAD, $\mathrm{Ph}_{3} \mathrm{P}$, THF (2 steps, 82%); (k) PPTS, aq. $\mathrm{MeOH}\left(83 \%\right.$); (l) MCPBA, $\mathrm{NaHCO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}(99 \%$); (m) $\mathrm{Me}_{2} \mathrm{CuLi}, \mathrm{THF} ;$ (n) $\mathrm{CH}_{2} \mathrm{~N}_{2}, \mathrm{Et}_{2} \mathrm{O}\left(2\right.$ steps, 73%); (o) $\mathrm{SOCl}_{2}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\left(82 \%\right.$); (p) LiOH, $\mathrm{Bu}_{4} \mathrm{NOH}$, aq. TFH (92%); (q) $\mathrm{LiBF} 4, \mathrm{MeCN}$; (r) $\left(\mathrm{Me}_{2} \mathrm{~N}\right) \mathrm{S}_{3} \mathrm{~S}^{+}$ $\mathrm{Me}_{3} \mathrm{SiF}_{2}{ }^{-}, \mathrm{MeCN}$ (2 steps, 97%); (s) p-bromophenacyl bromide, $\mathrm{Pr}^{\mathrm{i}}{ }_{2} \mathrm{NEt}, \mathrm{Me}_{2} \mathrm{CN}(95 \%$).

Scheme 6 Stereoselectivity of aldol condensation
reagent. ${ }^{33}$ When compound 42 was treated with lithium dimethylcuprate in THF at $-78^{\circ} \mathrm{C}$, the reaction proceeded smoothly to give the indene diester $\mathbf{4 3}$ in 72% isolated yield after methylation. Our mechanistic interpretation of this reaction is shown in Scheme 8. The first step of this reaction is one-electron transfer followed by the fission of the lactone $\mathrm{C}-\mathrm{O}$ bond to form
a radical carboxylate 49 , which then reacts with another electron to form an enolate 50 . Finally, an intramolecular aldol condensation of dianion 50 afforded the indene 51. Dehydration of a tertiary alcohol was accomplished by treatment of the indene 43 with thionyl dichloride in pyridine in 82% yield. The final task for our synthesis was the removal of the three protective groups of the product 44a. To obtain the final product in an easily purifiable state, we adopted a stepwise process; first, by a mild saponification of the methyl ester to give monoacid 44b (lithium hydroxide, tetrabutylammonium hydroxide, aq. THF; secondly, removal of the SEM ether by lithium tetrafluoroborate to give compound 44c, ${ }^{34}$ and finally removal of the trimethylsilylethyl ester by tris(dimethylamino)sulphonium diflurotrimethylsiliconate. ${ }^{35}$ The crude product, obtained by the process described above, could be directly

Scheme 7 Model study on reductive cyclization. Reagents and yields: i, $\mathrm{Li}^{+} \mathrm{C}_{10} \mathrm{H}_{8}^{--}$, THF; ii, $\mathrm{CH}_{2} \mathrm{~N}_{2}$ (together 50%); iii, $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (61%).
purified by recrystallization from ethyl acetate to afford pure glycinoeclepin A 1 in 89% total yield; m.p. $120-121.5^{\circ} \mathrm{C}$ (needles); $[\alpha]_{\mathrm{D}}^{20}-10.2^{\circ}$ (c $0.63, \mathrm{MeOH}$). The total amount of synthetic glycinoeclepin A was 220 mg , and this was the first time that it had been obtained crystalline. Attempts to elucidate its conformation by X-ray analysis, however, ended in failure. Our synthetic glycinoeclepin A 1 showed almost the same (slightly stronger) hatch-stimulating activity as the natural product. For identification, synthetic glycinoeclepin A 1 was converted into its bis-(p-bromophenacyl) diester 45 by the reported procedure ${ }^{2.3}$ in 95% yield; m.p. $133.5-134.5^{\circ} \mathrm{C}$, $[x]_{\mathrm{D}}^{22}-19.1^{\circ}\left(c \quad 0.57, \mathrm{CHCl}_{3}\right)$. The IR, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data were identical with those of natural glycinoeclepin A's derivative. ${ }^{2}$

In summary, glycinoeclepin A 1 was stereoselectively synthesized starting from the (S)-hydroxy ketones 3 and 20a, obtained by microbial methods. The overall yield of compound 1 was 5.2% from 3 and 4.4% from $20 a(2.6 \%$ from 16).

Experimental

All b.p.s and m.p.s are uncorrected; m.p.s were measured on a Yanaco micro melting point apparatus. IR spectra were measured for samples as films for oils or as Nujol mulls for solids on a JASCO IRA-102 spectrometer. NMR spectra were recorded with SiMe_{4} as internal standard at 60 MHz on a Hitachi R-24A spectrometer, at 90 MHz on a JEOL JNM-EX 90 , at 100 MHz on a JEOL JNM-FX 100 , at 300 MHz on a Bruker AC 300, or at 400 MHz on a JEOL JNM-FX 400 spectrometer. J Values are in Hz . Optical rotations were measured on a JASCO DIP 140 polarimeter. Mass spectra were recorded on a JEOL SX-102 instrument at 10 eV . Refractive indexes were measured on a ERMA new Abbe refractometer.
(3S)-3-(t-Butyldimethylsiloxy)-6-(1-hydroxyethyl)-2,2-dimethylcyclohexanone 4a.-To a stirred and cooled solution of diisopropylamine ($32.3 \mathrm{~cm}^{3}, 231 \mathrm{mmol}$) in dry THF ($150 \mathrm{~cm}^{3}$) at -78 to $-25^{\circ} \mathrm{C}$ was added dropwise butyllithium (1.62 mol dm^{-3} in hexane; $143 \mathrm{~cm}^{3}, 232 \mathrm{mmol}$) under Ar. After being
stirred for 15 min at -45 to $-25^{\circ} \mathrm{C}$ the mixture was treated with a solution of compound $3(53.9 \mathrm{~g}, 210 \mathrm{mmol})$ in dry THF $\left(100 \mathrm{~cm}^{3}\right)$ dropwise at -78 to $-45^{\circ} \mathrm{C}$, and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 30 min . A solution of acetaldehyde (29 $\left.\mathrm{cm}^{3}, 519 \mathrm{mmol}\right)$ in dry THF ($50 \mathrm{~cm}^{3}$) was then added to this mixture at -78 to $-55^{\circ} \mathrm{C}$. After being stirred at $-78^{\circ} \mathrm{C}$ for 1 h, the reaction mixture was poured into saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted three times with diethyl ether. The extract was washed successively with water, saturated aq. NaHCO_{3} and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated under reduced pressure to give crude compound 4 a (72.2 g , quant.) as a diastereomeric mixture contaminated with $\sim 25 \%$ of dehydration product 5, $v_{\max }($ film $) / \mathrm{cm}^{-1} 3450$ and $1695 ; \delta_{\mathrm{H}}(100 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 0.04\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{2} \mathrm{Si}\right), 0.87,0.90,0.92$ and 0.96 (total 9 H , $\left.4 \times \mathrm{s}, \mathrm{Me}_{3} \mathrm{CSi}\right), 1.05-1.30\left[9 \mathrm{H}, \mathrm{m}, 2-\mathrm{Me}_{2}\right.$ and $\left.\mathrm{MeCH}(\mathrm{OH})\right]$, $1.30-2.70\left(6 \mathrm{H}, \mathrm{m}, 4-\mathrm{and} 5-\mathrm{H}_{2}, 6-\mathrm{H}\right.$ and OH$), 3.35-4.05[2 \mathrm{H}, \mathrm{m}$, $3-\mathrm{H}$ and $\mathrm{MeCH}(\mathrm{OH})]$ and 5.31 (small peak for $5, \sim 0.3 \mathrm{H}, \mathrm{q} J 6$, $\mathrm{C}=\mathrm{CH}$). As the product contained compound 5 , which was desired for the next reaction, this was employed for the next step without further purification.
(3S)-3-(t-Butyldimethylsiloxy)-6-ethylidene-2,2-dimethylcyclohexanone 5.-To a cooled and stirred solution of crude compound $4 \mathrm{a}(72.0 \mathrm{~g}, 240 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}\left(70 \mathrm{~cm}^{3}, 502 \mathrm{mmol}\right)$ in dry THF ($700 \mathrm{~cm}^{3}$) at $0-15^{\circ} \mathrm{C}$ was added dropwise methanesulphonyl chloride ($28 \mathrm{~cm}^{3}, 362 \mathrm{mmol}$). After the mixture had been stirred at $0-5{ }^{\circ} \mathrm{C}$ for 2 h , further $\mathrm{Et}_{3} \mathrm{~N}(20$ cm^{3}) and methanesulphonyl chloride ($10 \mathrm{~cm}^{3}$) were added to the reaction mixture, and the mixture was stirred at room temperature for 1 h , before being ice-cooled again and DBU ($108 \mathrm{~cm}^{3}, 722 \mathrm{mmol}$) was added. After the addition, the mixture was stirred for 1 h at $50^{\circ} \mathrm{C}$ before being poured into water and extracted with diethyl ether. The extract was washed successively with water, saturated aq. NaHCO_{3} and brine, dried (MgSO_{4}), filtered, and concentrated under reduced pressure. The crude product was purified by silica gel chromatography to give compound 5 ($56.0 \mathrm{~g}, 94.3 \%$) (Found: C, 67.7; H, 10.6. $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{Si}$ requires $\mathrm{C}, 68.03 ; \mathrm{H}, 10.70 \%$); $n_{\mathrm{D}}^{21} 1.4749 ;[\alpha]_{\mathrm{D}}^{23}$ $+0.27^{\circ}$ (c $1.09, \mathrm{CHCl}_{3}$); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1683,1615,1250$, 1080 and $835 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.04(3 \mathrm{H}, \mathrm{s}, \mathrm{MeSi}), 0.05$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{MeSi}$), $0.88\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{2} \mathrm{CSi}\right), 1.07(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}), 1.10$ ($3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}$), 1.72 ($3 \mathrm{H}, \mathrm{d}, J 9.6, \mathrm{MeCH}=\mathrm{C}$), $1.79(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$), $1.95(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 2.44(1 \mathrm{H}, \mathrm{brdt}, J 21$ and $7.6,5-\mathrm{H}), 2.60(1 \mathrm{H}$, $\mathrm{br} \mathrm{m}, 5-\mathrm{H}), 3.76(1 \mathrm{H}, \mathrm{dd}, J 3.3$ and $8.7,3-\mathrm{H})$ and $6.55(1 \mathrm{H}, \mathrm{tq}$, $J 2.8$ and $9.6, \mathrm{C}=\mathrm{CH}$).
(1R,3S)-3-(t -Butyldimethylsiloxy)-6-ethylidene-2,2-dimethylcyclohexanol $\mathbf{6 a}$.-To a stirred and cooled solution of ketone 5 ($55.5 \mathrm{~g}, 196 \mathrm{mmol}$) in THF ($250 \mathrm{~cm}^{3}$) was added aropwise a solution of $\mathrm{NaBH}_{4}(8.2 \mathrm{~g}, 217 \mathrm{mmol})$ in $\mathrm{EtOH}\left(250 \mathrm{~cm}^{3}\right)$ during 10 min . After being stirred at $0-5{ }^{\circ} \mathrm{C}$ for 2 h , the reaction mixture was concentrated under reduced pressure. The residue was diluted with water and extracted with diethyl ether. The extract was washed successively with water, saturated aq. NaHCO_{3} and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated under reduced pressure. Crude product was recrystallized from hexane to give compound 6 a (40.8 g). The mother liquor was evaporated and the residue was purified by SiO_{2} chromatography to give a further crop (8.5 g ; total $49.3 \mathrm{~g}, 88 \%$) of compound 6a, m.p. $42.5-43.5^{\circ} \mathrm{C}$ (rods) (Found: C, 67.6; H, 11.3.

Scheme 8 Mechanism of reductive C -ring formation. Reagent: $\mathrm{i}, \mathrm{H}_{3} \mathrm{O}^{+}$, then $\mathrm{CH}_{2} \mathrm{~N}_{2}$.
$\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{Si}$ requires $\mathrm{C}, 67.55 ; \mathrm{H}, 11.34 \%$); $[\alpha]_{\mathrm{D}}^{23}+61.8^{\circ}(c$ $\left.1.05, \mathrm{CHCl}_{3}\right) ; v_{\max }(\mathrm{Nujol}) / \mathrm{cm}^{-1} 3550,1155,1105,1060,870$ and $830 ; \delta_{\mathbf{H}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.10\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{2} \mathrm{Si}\right), 0.81(3 \mathrm{H}$, $\mathrm{s}, 2-\mathrm{Me}), 0.91\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{3} \mathrm{CSi}\right), 1.13(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}), 1.67(3 \mathrm{H}, \mathrm{dd}$, $J 1$ and $7, \mathrm{MeCH}=\mathrm{C}), 1.50-1.80\left(3 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}\right.$ and OH$), 2.15-$ $2.55\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{2}\right), 3.51(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 1-\mathrm{H}), 3.64(1 \mathrm{H}$, br t, $3-\mathrm{H})$ and $5.49(1 \mathrm{H}$, br q, $J 7, \mathrm{C}=\mathrm{CH})$.
(1S,3R)-1-(t-Butyldimethylsiloxy)-3-(1-ethoxyethoxy)-4-eth-ylidene-2,2-dimethylcyclohexane 6b.-To an ice-cooled and stirred solution of the alcohol $\mathbf{6 a}(38.7 \mathrm{~g}, 136 \mathrm{mmol})$ in ethyl vinyl ether ($300 \mathrm{~cm}^{3}$) was added toluene-p-sulphonic acid monohydrate ($\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}, 100 \mathrm{mg}$). After the mixture had been stirred at room temperature for 10 min , further $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ (30 mg) was added and the mixture was stirred for 5 min . The addition was repeated four times until the starting material disappeared on TLC monitoring. The reaction mixture was poured into water and extracted with diethyl ether. The extract was washed successively with water, saturated aq. NaHCO_{3} and brine, dried (MgSO_{4}), filtered, and concentrated under reduced pressure. Distillation of the residue gave the title compound 6b ($47.6 \mathrm{~g}, 98.1 \%$), b.p. $120-125^{\circ} \mathrm{C} / 0.6 \mathrm{mmHg}$ (Found: $\mathrm{C}, 67.1 ; \mathrm{H}, 11.2 . \mathrm{C}_{20} \mathrm{H}_{40} \mathrm{O}_{3} \mathrm{Si}$ requires $\mathrm{C}, 67.36 ; \mathrm{H}$, 11.31%) $n_{\mathrm{D}}^{20} 1.4602 ;[x]_{\mathrm{D}}^{23}-49.1^{\circ}\left(c 1.04, \mathrm{CHCl}_{3}\right) ; v_{\max }($ film $) /$ $\mathrm{cm}^{-1} 1270,1015,1060$ and $900 ; \delta_{\mathrm{H}}\left(90 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $0.02\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{2} \mathrm{Si}\right), 0.65-1.25(12 \mathrm{H}, \mathrm{m}, \mathrm{Me} \times 4), 0.87(9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{Me}_{2} \mathrm{CSi}\right), 1.29\left(\frac{3}{2} \mathrm{H}, \mathrm{d}, J 6, M e \mathrm{CH}=\mathrm{C}\right), 1.30\left(\frac{3}{2} \mathrm{H}, \mathrm{d}, J 6\right.$, $M e \mathrm{CH}=\mathrm{C}), 1.35-1.85\left(3 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}, 6-\mathrm{H}_{2}\right), 2.50(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H})$, 3.25-3.85 ($4 \mathrm{H}, \mathrm{m}, 1-$ and $\left.3-\mathrm{H}, \mathrm{OCH}_{2} \mathrm{Me}\right), 4.60\left(\frac{1}{2} \mathrm{H}, \mathrm{q}, J 5.5\right.$, OCHMeO), $3.67\left(\frac{1}{2} \mathrm{H}, \mathrm{q}, \mathrm{OCHMeO}\right), 5.27\left(\frac{1}{2} \mathrm{H}\right.$, br q, $J 6$, $\mathrm{C}=\mathrm{CH} \mathrm{Me})$ and $5.56\left(\frac{1}{2} \mathrm{H}\right.$, br q, $\left.J 6, \mathrm{C}=\mathrm{C} H \mathrm{Me}\right)$.
(1S,3R)-3-(1-Ethoxyethoxy)-4-ethylidene-2,2-dimethylcyclohexanol $6 \mathbf{c}$.- To a stirred solution of compound $6 \mathrm{~b}(45.0 \mathrm{~g}$, $126 \mathrm{mmol})$ in dry THF ($450 \mathrm{~cm}^{3}$) was added a solution of tetrabutylammonium fluoride ($1 \mathrm{~mol} \mathrm{dm}^{-3}$ in THF; $150 \mathrm{~cm}^{3}$, 150 mmol). The reaction mixture was heated under reflux for 4 h . After the mixture had cooled, water was added and the mixture was extracted with diethyl ether. The extract was washed successively with water ($\times 2$), saturated aq. NaHCO_{3} and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure. The residue was purified by SiO_{2} column chromatography to give compound $\mathbf{6 c}(29.3 \mathrm{~g}, 96 \%$) (Found: $\mathrm{C}, 68.9 ; \mathrm{H}, 11.0 . \mathrm{C}_{14} \mathrm{H}_{26} \mathrm{O}_{3}$ requires $\mathrm{C}, 69.38 ; \mathrm{H}, 10.81 \%$); $n_{\mathrm{D}}^{21} 1.4657 ;[\alpha]_{\mathrm{D}}^{23}+18.3^{\circ}\left(c \quad 1.16, \mathrm{CHCl}_{3}\right) ; v_{\max }($ film $) / \mathrm{cm}^{-1}$ $3530,1130,1080,1020,990$ and $950 ; \delta_{\mathrm{H}}\left(90 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 0.81 and 0.91 (total $\left.6 \mathrm{H}, 2 \times \mathrm{s}, 2-\mathrm{Me}_{2}\right), 1.00-1.35(6 \mathrm{H}$, $\mathrm{m}, \mathrm{Me} \mathrm{CH}_{2} \mathrm{O}$ and OCHMeO$), 1.67(3 \mathrm{H}, \mathrm{d}, J 6, M e \mathrm{CH}=\mathrm{C})$, $1.70-2.45\left(5 \mathrm{H}, \mathrm{m}, 5-\right.$ and $6-\mathrm{H}_{2}$ and OH$), 3.25-3.85(4 \mathrm{H}$, $\mathrm{m}, 1-\mathrm{and} 3-\mathrm{H}$ and $\left.\mathrm{MeCH}_{2} \mathrm{O}\right), 4.54\left(\frac{1}{2} \mathrm{H}, \mathrm{q}, J 5.2, \mathrm{OCH} \mathrm{MeO}\right)$, $4.63\left(\frac{1}{2} \mathrm{H}, \mathrm{q}, J 5.2, \mathrm{OC} H \mathrm{MeO}\right)$ and $5.32-5.55(1 \mathrm{H}, \mathrm{m}$, CCH Me).
(1R,2S,4S)-2-(1-Ethoxyethoxy)-1-(1-iodoethyl)-3,3-dimethyl-7-oxabicyclo[2.2.1]heptane 7.-A solution of compound $\mathbf{6 c}$ $(27.5 \mathrm{~g}, 113 \mathrm{mmol})$ and NIS $(38.3 \mathrm{~g}, 170 \mathrm{mmol})$ in dry acetonitrile ($500 \mathrm{~cm}^{3}$) was stirred at room temperature in the dark for 12 h . The resulting mixture was poured into water and extracted with diethyl ether. The extract was washed successively with 10% aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, water, saturated aq. NaHCO_{3} and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated under reduced pressure. The residue was chromatographed over SiO_{2} to give compound $7(29.4 \mathrm{~g}, 70 \%)$ (Found: C, $46.0 ; \mathrm{H}, 6.9$. $\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{IO}_{3}$ requires $\mathrm{C}, 45.66 ; \mathrm{H}, 6.84 \%$); $n_{\mathrm{D}}^{20} 1.4982 ;[\alpha]_{\mathrm{D}}^{20}$ $+11.4^{\circ}\left(c 1.18, \mathrm{CHCl}_{3}\right) ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1200,900,860$ and 815 ; $\delta_{\mathrm{H}}\left(60 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.90-1.30(15 \mathrm{H}, \mathrm{m}, 5 \times \mathrm{Me}), 1.30-2.60$ $\left(4 \mathrm{H}, \mathrm{m}, 5-\mathrm{and} 6-\mathrm{H}_{2}\right), 3.10-3.75[5 \mathrm{H}, \mathrm{m}, 2-, 4-\mathrm{and} 1-(1-\mathrm{H})$ and $\mathrm{MeCH} \mathrm{H}_{2} \mathrm{O}$] and 4.25-4.65 (1 H, m, OCH MeO).
(1S,2S,4S)-2-(1-Ethoxyethoxy)-3,3-dimethyl-1-vinyl-7-oxabicyclo[2.2.1] heptane 8 .-A solution of the iodide $7(22.5 \mathrm{~g}, 61.1$ $\mathrm{mmol})$ and DBU $(14.0 \mathrm{~g}, 92.1 \mathrm{mmol})$ in toluene $\left(200 \mathrm{~cm}^{3}\right)$ was heated under reflux. After $12 \mathrm{~h} \mathrm{DBU}(4.7 \mathrm{~g}, 31 \mathrm{mmol})$ was added to the mixture and the mixture was heated for a further 12 h . After cooling, the reaction mixture was poured into water and extracted with diethyl ether. The extract was washed successively with water, saturated aq. NaHCO_{3} and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated under reduced pressure. The residue was purified by short SiO_{2} column chromatography and vacuum distillation to give compound 8 $\left(13.9 \mathrm{~g}, 95 \%\right.$), b.p. $78-81^{\circ} \mathrm{C} / 0.35 \mathrm{mmHg}$ (Found: C, $69.5 ; \mathrm{H}$, 9.9. $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{3}$ requires $\left.\mathrm{C}, 69.96 ; \mathrm{H}, 10.06 \%\right) ; n_{\mathrm{D}}^{20} 1.4565 ;[\alpha]_{\mathrm{D}}^{23}$ $+18.6^{\circ}\left(c 1.18, \mathrm{CHCl}_{3}\right) ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3100,1650,1100,1013$, $970,945,910$ and $700 ; \delta_{\mathrm{H}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.05-1.35(12 \mathrm{H}$, $\mathrm{m}, 4 \times \mathrm{Me}), 1.04-2.00\left(4 \mathrm{H}, \mathrm{m}, 5-\right.$ and $\left.6-\mathrm{H}_{2}\right), 3.38\left(\frac{2}{3} \mathrm{H}, \mathrm{s}\right.$, major $2-\mathrm{H}), 3.46\left(\frac{1}{3} \mathrm{H}, \mathrm{s}\right.$, minor $\left.2-\mathrm{H}\right), 3.39-3.66\left(2 \mathrm{H}, \mathrm{m}, \mathrm{MeCH} \mathrm{H}_{2}\right), 3.88$ $(1 \mathrm{H}, \mathrm{d}, J 4,4-\mathrm{H}), 4.63\left(\frac{1}{3} \mathrm{H}, \mathrm{q}, J 6\right.$, minor OCH MeO$), 4.67\left(\frac{2}{3} \mathrm{H}\right.$, $\mathrm{q}, J 6$, major OCHMCO$), 5.15-5.43\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}=\mathrm{CH}_{2}\right), 6.19\left(\frac{2}{3} \mathrm{H}\right.$, dd, $J 11$ and 18 , major $\left.\mathrm{CH}_{2}=\mathrm{CH}\right)$ and $6.27\left(\frac{1}{3} \mathrm{H}, \mathrm{dd}, J 11\right.$ and 18 , minor $\mathrm{CH}_{2}=\mathrm{CH}$).

2-\{(1S,2S,4S)-2-(1-Ethoxyethoxy)-3,3-dimethyl-7-oxabicyclo[2.2.1] heptan-1-yl\}ethanol 9.-To a stirred and cooled solution of compound $8(12.5 \mathrm{~g}, 52.0 \mathrm{mmol})$ in dry THF $\left(50 \mathrm{~cm}^{3}\right)$ was added $9-\mathrm{BBN}\left(0.5 \mathrm{~mol} \mathrm{dm}{ }^{-3}\right.$ solution in THF; $125 \mathrm{~cm}^{3}, 62.5$ mmol) at $0-5^{\circ} \mathrm{C}$ under Ar. After the addition the mixture was stirred at room temperature for 2 h and was then ice-cooled and excess of $9-\mathrm{BBN}$ was destroyed by the addition of water (10 cm^{3}) at $0-5^{\circ} \mathrm{C}$. To the reaction mixture at $50-60^{\circ} \mathrm{C}$ were added $3 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ aq. $\mathrm{NaOH}\left(21 \mathrm{~cm}^{3}, 63 \mathrm{mmol}\right)$ and 35% aq. $\mathrm{H}_{2} \mathrm{O}_{2}$ ($19 \mathrm{~cm}^{3}, 196 \mathrm{mmol}$), and the mixture was stirred at $30-60^{\circ} \mathrm{C}$ for 1 h , poured into water, and extracted with diethyl ether ($\times 3$). The extract was washed successively with saturated aq. NaHCO_{3} and brine, dried (MgSO_{4}), filtered and concentrated under reduced pressure. The residue was distilled under reduced pressure to give compound 9 (13.4 g, quant.), b.p. 117$118{ }^{\circ} \mathrm{C} / 0.45 \mathrm{mmHg}$ (Found: C, $64.8 ; \mathrm{H}, 9.9 . \mathrm{C}_{14} \mathrm{H}_{26} \mathrm{O}_{4}$ requires $\mathrm{C}, 65.09 ; \mathrm{H}, 10.14 \%) ; n_{\mathrm{D}}^{20} 1.4621 ;[\alpha]_{\mathrm{D}}^{23}+8.94^{\circ}\left(c 1.28, \mathrm{CHCl}_{3}\right)$; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3460,1135,1060$ and $998 ; \delta_{\mathrm{H}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 1.07 [3 H, s, 2-(3-Me)], 1.09 [3 H, s, 2-(3-Me)], $1.26(3 \mathrm{H}, \mathrm{t}, J$ 7, MeCH$)_{2}$) $1.34\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 6, \mathrm{MeCH}_{2} \mathrm{O}\right), 1.35-2.60(7 \mathrm{H}, \mathrm{m}$, $5-$ and $6-\mathrm{H}_{2}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ and OH$), 3.35-4.30(6 \mathrm{H}, \mathrm{m} ; 2$ - and $4-\mathrm{H}, \mathrm{CH}_{2} \mathrm{C} \mathrm{H}_{2} \mathrm{OH}$ and $\left.\mathrm{MeCH}_{2} \mathrm{O}\right)$ and $4.63(1 \mathrm{H}, \mathrm{q}, J 7$, OCH MeO).
$\{(1 \mathrm{~S}, 2 \mathrm{~S}, 4 \mathrm{~S})-2-(1-$ Ethoxyethoxy)-3,3-dimethyl-7-oxabicyclo[2.2.1] heptan-1-yl\} acetaldehyde 10.-To an ice-cooled and stirred solution of oxalyl dichloride $\left(6.57 \mathrm{~cm}^{3}, 76.6 \mathrm{mmol}\right)$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(130 \mathrm{~cm}^{3}\right)$ was added dropwise dimethyl sulphoxide (DMSO) ($10.9 \mathrm{~cm}^{3}, 153 \mathrm{mmol}$) at -60 to $-45^{\circ} \mathrm{C}$ under Ar. After the mixture had been stirred at $-50^{\circ} \mathrm{C}$ for 15 min , a solution of the alcohol $9(13.2 \mathrm{~g}, 51.1 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60$ cm^{3}) was added dropwise to the reaction mixture at -60 to $-50^{\circ} \mathrm{C}$, and the mixture was stirred at the same temperature. After 1 h , triethylamine $\left(23.5 \mathrm{~cm}^{3}, 168 \mathrm{mmol}\right)$ was added to the reaction mixture at -60 to $-40^{\circ} \mathrm{C}$ and the temperature was allowed to rise gradually to $-10^{\circ} \mathrm{C}$ during 1 h 10 min . The resulting suspension was poured into water and extracted with diethyl ether $(\times 2)$. The extract was washed successively with water, saturated aq. NaHCO_{3} and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated under reduced pressure to give crude aldehyde $10(14.1 \mathrm{~g}), v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 2730$ and $1722 ; \delta_{\mathrm{H}}(100$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.00-1.30(12 \mathrm{H}, \mathrm{m}, \mathrm{Me} \times 4), 1.30-1.95(4 \mathrm{H}, \mathrm{m}$, 5- and 6- H_{2}), 2.74-2.86 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHO}$), $3.33\left(\frac{2}{3} \mathrm{H}, \mathrm{s}\right.$, major $2-\mathrm{H}) 3.51\left(2 \mathrm{H}, \mathrm{q}, J 6, \mathrm{MeCH}_{2}\right), 3.52\left(\frac{1}{3} \mathrm{H}, \mathrm{s}\right.$, minor $\left.2-\mathrm{H}\right), 3.85-$ $3.93(1 \mathrm{H}, \mathrm{br} \mathrm{m}, 4-\mathrm{H}), 4.45\left(\frac{2}{3} \mathrm{H}, \mathrm{q}, J 6\right.$, major OCH MeO$), 4.58\left(\frac{1}{3}\right.$ $\mathrm{H}, \mathrm{q}, J 6$, minor OCH MeO$), 9.81\left(\frac{2}{3} \mathrm{H}, \mathrm{t}, J 2, \mathrm{CHO}\right)$ and $9.83\left(\frac{1}{3}\right.$
$\mathrm{H}, \mathrm{t}, J 2, \mathrm{CHO}$). This was employed for the next step without further purification.

1-\{(1S,2S,4S)-2-(1-Ethoxyethoxy)-3,3-dimethyl-7-oxabicyclo-[2.2.1]heptan-1-yl) pent-4-en-2-ol 11a.-A mixture of Mg (6.1 $\mathrm{g}, 251 \mathrm{mg}$-atom), a trace amount of $\mathrm{I}_{2}, 1,2$-dibromoethane (0.5 g) and dry THF ($20 \mathrm{~cm}^{3}$) was heated under Ar until a reaction started and a reddish brown colour disappeared. The mixture was then diluted with dry THF ($80 \mathrm{~cm}^{3}$). To this was added dropwise a solution of allyl chloride (3-chloroprop-1-ene) $(10.4 \mathrm{~g}, 136 \mathrm{mmol})$ and 1,2 -dibromomethane (0.5 g) in dry THF ($200 \mathrm{~cm}^{3}$) at -10 to $-5^{\circ} \mathrm{C}$ during 3 h . After the addition, the mixture was stirred for 1 h at the same temperature. The resulting Grignard reagent solution was cooled to $-78^{\circ} \mathrm{C}$, and to this was added dropwise a solution of crude aldehyde $10(14.0 \mathrm{~g}$, $51 \mathrm{mmol})$ in dry THF $\left(40 \mathrm{~cm}^{3}\right)$ at -78 to $-65^{\circ} \mathrm{C}$. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h , and then was quenched by being poured into saturated aq. ammonium chloride and was extracted with diethyl ether. The extract was washed successively with water, saturated aq. NaHCO_{3} and brine, dried (MgSO_{4}), filtered, and concentrated under reduced pressure to give a crude product (15.4 g). This was purified by SiO_{2} column chromatography to give compound 11 a ($13.9 \mathrm{~g}, 92 \%$ from 9) (Found: C, 68.3; H, 10.1. $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{O}_{4}$ requires $\mathrm{C}, 68.42 ; \mathrm{H}$, $10.13 \%) ; n_{\mathrm{D}}^{21} 1.4725 ;[\alpha]_{\mathrm{D}}^{22}+6.2^{\circ}\left(c 0.92, \mathrm{CHCl}_{3}\right) ; v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1}$ 3490,3080 and $1640 ; \delta_{\mathrm{H}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.00-1.40(12 \mathrm{H}, \mathrm{m}$, $\mathrm{Me} \times 4), 1.40-2.55\left[9 \mathrm{H}, \mathrm{m}, 1-\left(5-\mathrm{H}_{2}\right)\right.$ and $1-\left(6-\mathrm{H}_{2}\right), \mathrm{CH} \mathrm{H}_{2} \mathrm{CH}-$ $(\mathrm{OH}) \mathrm{CH}_{2}$ and OH$], 3.29-4.15(5 \mathrm{H}, \mathrm{m}, 1-(2-\mathrm{H})$ and $1-(4-\mathrm{H})$, CHOH and MeCH_{2}), $4.40-4.73(1 \mathrm{H}, \mathrm{m}, \mathrm{OCH} \mathrm{MeO}), 4.95-5.25$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}=\mathrm{CH}$) and 5.60-6.10 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}$).
(1S,2S,4S)-1-[2-(t-Butyldimethylsiloxy)pent-4-enyl]-2-(1-eth-oxyethyl)-3,3-dimethyl-7-oxabicyclo[2.2.1]heptane 11b.-A solution of compound $11 \mathrm{a}(13.0 \mathrm{~g}, 43.6 \mathrm{mmol})$, inidazole (8.90 g , 131 mmol), t-butyl(chloro)dimethylsilane ($9.85 \mathrm{~g}, 65.4 \mathrm{mmol}$) and DMAP (0.1 g) in dry dimethylformamide ($130 \mathrm{~cm}^{3}$) was stirred overnight at room temperature. The reaction mixture was poured into water and extracted with diethyl ether. The extract was washed successively with water, saturated aq. NaHCO_{3} and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated under reduced pressure. The residue was purified by SiO_{2} column chromatography to give the bis-ether $11 \mathrm{~b}(16.1 \mathrm{~g}, 90 \%)$ (Found: C, 67.0; H, 10.6). $\mathrm{C}_{23} \mathrm{H}_{44} \mathrm{O}_{4} \mathrm{Si}$ requires C, 66.94; H, 10.75%); $[\alpha]_{\mathrm{D}}^{23}+4.1^{\circ}\left(c 1.05, \mathrm{CHCl}_{3}\right)$; $v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 3080$, $1640,1250,835$ and $770 ; n_{\mathrm{D}}^{21} 1.4629 ; \delta_{\mathrm{H}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $0.10\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{2} \mathrm{Si}\right), 0.91\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{3} \mathrm{C}\right), 1.06\left(6 \mathrm{H}, \mathrm{s}, 3-\mathrm{Me}_{2}\right)$, $0.95-1.35\left(6 \mathrm{H}, \mathrm{m}, \mathrm{MeCH} \mathrm{C}_{2}\right.$ and OCHMeO), $1.40-2.36[8 \mathrm{H}, \mathrm{m}$, $5-$ and $6-\mathrm{H}_{2}$ and $\left.\mathrm{CH}_{2} \mathrm{CH}(\mathrm{OTBS}) \mathrm{CH}_{2}\right], 3.14,3.20$ and 3.21 (total $1 \mathrm{H}, 3 \times \mathrm{s}, 2-\mathrm{H}), 3.40-3.63\left(2 \mathrm{H}, \mathrm{m}, \mathrm{MeCH}_{2}\right), 3.70-3.83$ ($1 \mathrm{H}, \mathrm{br}, 4-\mathrm{H}$), $3.83-4.25(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOTBS}), 4.50,4.51$ and 4.65 (total $1 \mathrm{H}, \mathrm{q}, J 6, \mathrm{OC} H \mathrm{MeO}), 4.90-5.17\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}=\mathrm{CH}\right)$ and 5.63-6.20 $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right)$.

3-(t-Butyldimethylsiloxy)-4-\{(1S,2S,4S)-2-(1-ethoxyethoxy)-3,3-dimethyl-7-oxabicyclo[2.2.1]heptan-1-yl\}butyraldehyde 12.-A mixture of compound $11 \mathrm{~b}(13.0 \mathrm{~g}, 31.5 \mathrm{mmol}), \mathrm{OsO}_{4}$ $(1.00 \mathrm{~g}, 3.93 \mathrm{mmol}), \mathrm{NaIO}_{4}(20.2 \mathrm{~g}, 94.4 \mathrm{mmol})$, diethyl ether ($200 \mathrm{~cm}^{3}$) and water ($200 \mathrm{~cm}^{3}$) was heated under reflux and vigorously stirred under Ar. After $9 \mathrm{~h}, \mathrm{NaIO}_{4}(10.0 \mathrm{~g}, 46.7$ mmol) was added and the mixture was vigorously stirred for a further 4 h . After cooling, the ethereal layer was separated and the aq. solution was extracted with diethyl ether ($\times 2$). The combined extracts were washed successively with water, 10% aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, saturated aq. NaHCO_{3} and brine, dried (MgSO_{4}), filtered, and concentrated under reduced pressure. The residue was chromatographed over SiO_{2} to give the aldehyde $12(9.80 \mathrm{~g}, 75 \%)$), $n_{\mathrm{D}}^{18} 1.4580 ; v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 2720$, 1728, 838 and 778; $\delta_{\mathrm{H}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.03-0.12(6 \mathrm{H}, \mathrm{m}$,
$\left.\mathrm{Me}_{2} \mathrm{Si}\right), 0.88\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{3} \mathrm{CSi}\right), 0.89-1.36(12 \mathrm{H}, \mathrm{m}, \mathrm{Me} \times 4)$, $1.38-2.34\left[7 \mathrm{H}, \mathrm{m}, 4-\left(5-\mathrm{H}_{2}\right), 4-\left(6-\mathrm{H}_{2}\right), 4-\mathrm{H}_{2}\right.$ and $\left.2-\mathrm{H}\right], 2.67$ (1 $\mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.15-3.65\left(3 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}\right.$ and $\left.\mathrm{MeCH}_{2} \mathrm{O}\right)$ and 3.78 [1 $\mathrm{H}, \mathrm{br} \mathrm{m}, 4-(4-\mathrm{H})], 4.38-5.04(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$ and OCH MeO$)$ and $9.80(1 \mathrm{H}, \mathrm{m}, \mathrm{CHO})$. This was employed for the next step without further purification.

3-Methyl-3-vinylcyclopentanone 14.-To a cooled and stirred solution of 3-methylcyclopent-2-enone ($168 \mathrm{~g}, 1.75 \mathrm{~mol}$) and $\left(\mathrm{Bu}_{3} \mathrm{P} \cdot \mathrm{CuI}\right)_{4}(103 \mathrm{~g}, 65.6 \mathrm{mmol})$ in dry THF ($1.5 \mathrm{dm}^{3}$) was added dropwise a solution of vinylmagnesium bromide (1.0 mol dm^{-3} in THF; $2.2 \mathrm{dm}^{3}, 2.2 \mathrm{~mol}$) during 2 h at -45 to $40^{\circ} \mathrm{C}$ under Ar. After the addition the mixture was stirred for 1 h at -45 to $-35^{\circ} \mathrm{C}$, then was poured into saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$, and the resulting suspension was stirred overnight at room temperature. The organic phase was separated and the aq. phase was extracted three times with diethyl ether. The combined organic solution was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated under reduced pressure. The residue was distilled under reduced pressure to give crude compound 14 (178 g), b.p. $60-80^{\circ} \mathrm{C} / 30 \mathrm{mmHg}$. The crude product 14 was distilled again to give almost pure compound 14 ($169.5 \mathrm{~g}, 78 \%$), b.p. $68.5-73.0^{\circ} \mathrm{C} / 19 \mathrm{mmHg}$ (Found: C, 77.6 ; H, 9.9. $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}$ requires $\mathrm{C}, 77.38 ; \mathrm{H}, 9.74 \%$); $n_{\mathrm{D}}^{21} 1.4721$; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} \quad 3090,1736,1638,1400$ and $915 ; \delta_{\mathrm{H}}(300$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.96(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{Me}), 1.82(1 \mathrm{H}, \mathrm{dt}, J 17$ and 10 , $4-\mathrm{H}), 1.97(1 \mathrm{H}, \mathrm{dt}, J 17$ and $10,4-\mathrm{H}), 2.07(1 \mathrm{H}, \mathrm{d}, J 23,2-\mathrm{H})$, $2.28\left(2 \mathrm{H}, \mathrm{t}, J 10,5-\mathrm{H}_{2}\right), 2.32(1 \mathrm{H}, \mathrm{d}, J 23,2-\mathrm{H}), 4.96-5.02(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{C}=\mathrm{CH}_{2}\right)$ and $5.88\left(1 \mathrm{H}, \mathrm{dd}, J 15\right.$ and $\left.23, \mathrm{CH}=\mathrm{CH}_{2}\right)$.

7-Methyl-7-vinyl-1,4-dioxaspiro[4.4]nonane 15.-The solution of the ketone 14 ($156 \mathrm{~g}, 1.26 \mathrm{~mol}$), ethylene glycol (313 g , $5.04 \mathrm{~mol})$ and $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(7.2 \mathrm{~g}, 37.9 \mathrm{mmol})$ in benzene (470 cm^{3}) was heated under reflux with azeotropic removal of water using a Dean-Stark trap. When generation of water ceased (after 6 h), the reaction mixture was cooled, poured into saturated aq. NaHCO_{3}, and extracted with diethyl ether. The extract was washed successively with water, saturated aq. NaHCO_{3}, and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated under reduced pressure. The residue was distilled under reduced pressure to give spirane $15\left(185 \mathrm{~g}, 88 \%\right.$), b.p. $112-115^{\circ} \mathrm{C} / 55$ mmHg (Found: C, $71.0 ; \mathrm{H}, 9.5 . \mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{2}$ requires C, $71.39 ; \mathrm{H}$, 9.59%); $n_{\mathrm{D}}^{21} 1.4589 ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3090,1638,1330,1105$, 1030 and $953 ; \delta_{\mathrm{H}}\left(60 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.12(3 \mathrm{H}, \mathrm{s}, 7-\mathrm{Me}), 1.30-$ $2.55\left(6 \mathrm{H}, \mathrm{m}, 6-8\right.$-and $\left.9-\mathrm{H}_{2}\right), 3.77\left(4 \mathrm{H}, \mathrm{s}, 2\right.$ - and $\left.3-\mathrm{H}_{2}\right), 4.70-$ $5.10\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}=\mathrm{CH}_{2}\right)$ and $6.85\left(1 \mathrm{H}, \mathrm{dd}, J 11\right.$ and $\left.18, \mathrm{CH}=\mathrm{CH}_{2}\right)$.

2-(7-Methyl-1,4-dioxaspiro[4.4]nonan-7-yl)ethanol 16.-To a solution of olefin $15(180 \mathrm{~g}, 1.07 \mathrm{~mol})$ in dry THF $\left(350 \mathrm{~cm}^{3}\right)$ at $5^{\circ} \mathrm{C}$ was added borane-THF complex ($2.4 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ in THF; $220 \mathrm{~cm}^{3}, 0.53 \mathrm{~mol}$) during 1 h under Ar. After being stirred for 30 min at room temperature the reaction mixture was ice cooled and water $\left(55 \mathrm{~cm}^{3}\right)$ was added to destroy the excess of borane. After the completion of hydrogen generation, $3 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{aq}$. $\mathrm{NaOH}\left(180 \mathrm{~cm}^{3}, 0.54 \mathrm{~mol}\right)$ was added dropwise to the icecooled reaction mixture, and 35% aq. $\mathrm{H}_{2} \mathrm{O}_{2}\left(104 \mathrm{~cm}^{3}, 1.07 \mathrm{~mol}\right)$ was then added dropwise at $<40^{\circ} \mathrm{C}$. The resulting mixture was stirred at $50^{\circ} \mathrm{C}$ for 1 h and then poured into brine. The THF solution was separated, dried $\left(\mathrm{MgSO}_{4}\right)$, and filtered. The aq. solution was extracted with $\mathrm{CHCl}_{3}(\times 3)$, and the extract was dried $\left(\mathrm{MgSO}_{4}\right)$ and filtered. The combined filtrate was concentrated under reduced pressure to give crude compound 16 (202 g , quant.). A small amount of the product 16 was chromatographed to give an analytical sample (Found: C, 64.3; H, 9.6. $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{3}$ requires C, $64.49 ; \mathrm{H}, 9.74 \%$); $n_{\mathrm{D}}^{21} 1.4719 ; v_{\text {max }}$ (film) $\mathrm{cm}^{-1} 3400,1165,1080,1040$ and $980 ; \delta_{\mathrm{H}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.04$ (3 $\mathrm{H}, \mathrm{s}, 7-\mathrm{Me}), 1.30-2.45\left(9 \mathrm{H}, \mathrm{m}, 6-, 8-\mathrm{and} 9-\mathrm{H}_{2}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right.$ and $\mathrm{OH})$ and $3.55-4.05\left(6 \mathrm{H}, \mathrm{m}, 2-\right.$ and $3-\mathrm{H}_{2}$ and $\left.\mathrm{CH}_{2} \mathrm{OH}\right)$.
(7-Methyl-1,4-dioxaspiro[4.4]nonan-7-yl)acetaldehyde 17.To an ice-cooled, mechanically stirred suspension of the crude alcohol $16(200 \mathrm{~g}, 1.07 \mathrm{~mol})$ and powdered mol. sieves $3 \AA$ (300 g) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3.5 \mathrm{dm}^{3}\right.$) was added portionwise PCC $(400 \mathrm{~g}, 1.85 \mathrm{~mol})$. The mixture was stirred at $20-35^{\circ} \mathrm{C}$ for 4.5 h . Florisil (200 g) and diethyl ether ($4 \mathrm{dm}^{3}$) were then added to the reaction mixture and the resulting slurry was filtered through Florisil (500 g). The filter-cake was washed with diethyl ether. The combined filtrate and washings were concentrated under reduced pressure to give crude aldehyde $17(173 \mathrm{~g}, 87 \%)$, $v_{\max }($ film $) / \mathrm{cm}^{-1} 3470,2760,1735$ and $1400 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right)$ and $\delta_{\mathrm{H}}\left(90 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.20(3 \mathrm{H}, \mathrm{s}, 7-\mathrm{Me}), 1.40-2.10$ $\left(6 \mathrm{H}, \mathrm{m}, 6-, 8-\mathrm{and} 9-\mathrm{H}_{2}\right), 2.47(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 3, \mathrm{CH} 2 \mathrm{CHO}), 3.89[4 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}\right]$ and $9.81(1 \mathrm{H}, \mathrm{t}, J 3, \mathrm{CHO})$. This was immediately used for the next reaction without further purification.

6-Hydroxy-4-methylbicyclo[2.2.1]heptan-2-one 18.-A mixture of crude aldehyde $17(169 \mathrm{~g}, 917 \mathrm{mmol})$ and conc. $\mathrm{HCl}(75$ cm^{3}) in acetone-water ($8: 2 ; 1.5 \mathrm{dm}^{3}$) was heated under reflux under Ar for 2 h . Then the reaction mixture was ice-cooled and $8 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ aq. $\mathrm{NaOH}\left(100 \mathrm{~cm}^{3}, 800 \mathrm{mmol}\right)$ was added. Solid NaHCO_{3} was added portionwise to the mixture until it became slightly alkaline ($\mathrm{pH} \sim 8$, universal indicator). Acetone was evaporated off and the resulting aq. solution was saturated with NaCl and extracted with $\mathrm{CHCl}_{3}(\times 5)$. The combined extracts were dried (MgSO_{4}), filtered, and concentrated under reduced pressure. The residue was chromatographed over SiO_{2} to give compound 18 ($93.7 \mathrm{~g}, 73 \%$) as a $2: 3$ mixture of the exo- and endoisomer. Less polar fractions which were eluted earlier than compound 18 were evaporated and the resulting oil (22.2 g , mainly consisting of non-cyclized keto aldehyde) was heated again with conc. $\mathrm{HCl}\left(10 \mathrm{~cm}^{3}\right)$ in acetone-water $\left(8: 2 ; 200 \mathrm{~cm}^{3}\right)$ for 2 h . The same work-up and purification as above gave a further crop (11.5 g) of compound 18 (total $105.2 \mathrm{~g}, 82 \%$) (Found: $\mathrm{C}, 68.3 ; \mathrm{H}, 8.6 . \mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{2}$ requires $\mathrm{C}, 68.55 ; \mathrm{H}, 8.63 \%$); $v_{\max }($ film $) / \mathrm{cm}^{-1} \quad 3440,1730,1120$ and $1035 ; \delta_{\mathrm{H}}(100 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 1.27\left(\frac{9}{5} \mathrm{H}, \mathrm{s}, 4-\mathrm{Me}\right), 1.35\left(\frac{6}{5} \mathrm{H}, \mathrm{s}, 4-\mathrm{Me}\right), 1.85-2.50(7 \mathrm{H}$, $\mathrm{m}, 3-, 5-$ and $7-\mathrm{H}_{2}$ and OH$), 2.64\left(\frac{2}{5} \mathrm{H}, \mathrm{br}\right.$ s, $\left.1-\mathrm{H}\right), 2.76\left(\frac{3}{5} \mathrm{H}, \mathrm{dt}, J\right.$ 1 and $5,1-\mathrm{H}), 4.16\left(\frac{2}{5} \mathrm{H}\right.$, br d, $\left.J 7,6-\mathrm{H}\right)$ and $4.55\left(\frac{3}{5} \mathrm{H}\right.$, ddd, $J 3,5$ and $8,6-\mathrm{H}$).

4-Methylbicyclo[2.2.1]heptane-2,6-dione 19.-To an icecooled mechanically stirred mixture of compound $18(93 \mathrm{~g}, 663$ $\mathrm{mmol})$ and powdered mol. sieves $3 \AA(150 \mathrm{~g})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5$ dm^{3}) was added portionwise PCC ($286 \mathrm{~g}, 1.33 \mathrm{~mol}$). After being stirred at $25-35^{\circ} \mathrm{C}$ for 4 h the mixture was treated with Florisil (140 g) and diethyl ether ($2 \mathrm{dm}^{3}$) and the resulting slurry was filtered through Florisil (200 g). The filter-cake was washed with diethyl ether. The combined filtrate and washings were concentrated under reduced pressure. The residue was purified by short SiO_{2} column chromatography to give dione 19 as an unstable, wet solid ($74 \mathrm{~g}, 81 \%$), $v_{\max }($ film $) / \mathrm{cm}^{-1} 1760,1320$, $1035,984,965,918,900$ and $760 ; \delta_{\mathrm{H}}\left(60 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.47$ $(3 \mathrm{H}, \mathrm{s}, 4-\mathrm{Me}), 2.10\left(6 \mathrm{H}\right.$, br s, 3-, 5- and $\left.7-\mathrm{H}_{2}\right)$ and $3.10(1 \mathrm{H}$, br s, $6-\mathrm{H}$). Owing to the instability of this compound it was employed for the next step without further purification.

(1R,4S,6S)-6-Hydroxy-4-methylbicyclo[2.2.1]heptan-2-one

 20a.-A suspension of dry baker's yeast (100 g), sucrose (100 g), $\mathrm{KH}_{2} \mathrm{PO}_{4}(5.5 \mathrm{~g})$ and $\mathrm{Na}_{2} \mathrm{HPO}_{4} \cdot 12 \mathrm{H}_{2} \mathrm{O}(21.5 \mathrm{~g})$ in water $\left(1 \mathrm{dm}^{3}\right)$ was incubated at $30^{\circ} \mathrm{C}$ on a rotary platform shaker for 10 min . A solution of dione $18(1.0 \mathrm{~g}, 7.2 \mathrm{mmol})$ in EtOH $\left(3 \mathrm{~cm}^{3}\right)$ was then added to the mixture and the incubation was continued at $30^{\circ} \mathrm{C}$. After 10 min , further sucrose (10 g) and dry baker's yeast (10 g) were added to the mixture, and after a further 2 min of incubation further dione $18(1.0 \mathrm{~g}, 7.2 \mathrm{mmol})$ was added to the mixture. These additions of sucrose, baker's yeast and dione 18 were repeated twice more. After thecompletion of the additions, the incubation was continued for 30 min . The reaction mixture was then filtered through Celite, and filter-cake was washed with acetone. The filtrate was made slightly alkaline ($\mathrm{pH} \sim 8$, universal indicator) by addition of NaHCO_{3}, and was then saturated with NaCl and extracted six times with EtOAc. On the other hand, the washings (acetone solution) were evaporated, and the residue was diluted with EtOAc and washed with saturated aq. NaHCO_{3}. The combined organic phase was dried (MgSO_{4}), filtered, and concentrated under reduced pressure. The residue was purified by SiO_{2} column chromatography to give compound 20a as crystals (2.04 $\mathrm{g}, 55 \%$). A portion of the product was recrystallized from hexane-diethyl ether (3:1) to give pure compound 20a in 42% yield, m.p. $56.5-57.5^{\circ} \mathrm{C}$ (prisms) (Found: C, 68.5; H, 8.7. $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{2}$ requires $\mathrm{C}, 68.55 ; \mathrm{H}, 8.63 \%$); $[\alpha]_{\mathrm{D}}^{23}-16.6^{\circ}(c$ 1.06, $\left.\mathrm{CHCl}_{3}\right) ; v_{\max }(\mathrm{Nujol}) / \mathrm{cm}^{-1} 3450,1745,1250,1175,1135,1080$ and 1040; $\delta_{\mathrm{H}}\left(60 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.21(3 \mathrm{H}, \mathrm{s}, 4-\mathrm{Me}), 1.30-2.30(6$ $\mathrm{H}, \mathrm{m}, 3-, 5-$ and $\left.7-\mathrm{H}_{2}\right), 2.72(1 \mathrm{H}$, br d, $J 5,1-\mathrm{H}), 3.28(1 \mathrm{H}, \mathrm{br}$ s, OH , exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}\right)$ and $4.50(1 \mathrm{H}, \mathrm{br} \mathrm{m}, 6-\mathrm{H}$, after $\mathrm{D}_{2} \mathrm{O}$ addition; ddd, $J 3,5$ and 8). For determination of the enantiomeric purity, compound 20a was converted into the corresponding (R)-and (S)-MTPA ester 20b. ${ }^{20}$ HPLC analysis revealed the ester to be 82.5% ee [column, NUCLEOSIL ${ }^{\circledR}$ 50-5, $25 \mathrm{~cm} \times 4.6 \mathrm{~mm}$ diam; solvent, hexane-THF (20:1), $1.0 \mathrm{~cm}^{3}$ $\min ^{-1}$; detected at 254 nm$](S)-$ MTPA ester $20 b, t_{\mathrm{R}} 20.0 \mathrm{~min}$ (91.3%) and $28.5 \mathrm{~min}(8.7 \%)$.
(1R,4S,6S)-6-Acetoxy-4-methylbicyclo[2.2.1]heptan-2-one (4-Methyl-6-oxobicyclo[2.2.1]heptan-2-yl Acetate) 20c.-To an ice-cooled, stirred solution of the alcohol $20 \mathrm{a}(23.0 \mathrm{~g}, 164 \mathrm{mmol})$ and acetic anhydride ($60 \mathrm{~cm}^{3}$) in pyridine ($60 \mathrm{~cm}^{3}$) was added DMAP ($0.40 \mathrm{~g}, 3.3 \mathrm{mmol}, 0.02 \mathrm{~mol}$ equiv.). After being stirred for 10 min at $5^{\circ} \mathrm{C}$ and for 1.5 h at room temperature, the reaction mixture was poured into water and extracted with diethyl ether $(\times 3)$. The extract was washed successively with 1 $\mathrm{mol} \mathrm{dm}{ }^{-3}$ hydrochloric acid, water, saturated aq. NaHCO_{3} and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure. The residue was distilled under reduced pressure to give acetate $20 \mathrm{c}(27.9 \mathrm{~g}, 93 \%)$, b.p. $83-88^{\circ} \mathrm{C} / 0.95 \mathrm{mmHg}$ (Found: C, 65.9; H, 7.6. $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{3}$ requires $\mathrm{C}, 65.92 ; \mathrm{H}, 7.74 \%$); $n_{\mathrm{D}}^{21} 1.4648 ;[\alpha]_{\mathrm{D}}^{23}-47.6^{\circ}\left(c \quad 1.37, \mathrm{CHCl}_{3}\right) ; v_{\text {max }}(\mathrm{film}) / \mathrm{cm}^{-1}$ 1740,1370 and $1245 ; \delta_{\mathrm{H}}\left(60 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.24(3 \mathrm{H}, \mathrm{s}, 4-\mathrm{Me})$, $1.35-1.70\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{2}\right), 1.93(3 \mathrm{H}, \mathrm{s}, \mathrm{AcO}), 1.75-2.15(4 \mathrm{H}, \mathrm{m}$, $3-$ and $\left.7-\mathrm{H}_{2}\right), 2.76(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 5,1-\mathrm{H})$ and $5.21(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H})$.
(1'R,4'S,6'S)-Spiro-\{1,5-dihydro-2,4-benzodioxepine-3, 2^{\prime}-(4'methylbicyclo[2.2.1]heptane) $\}-6^{\prime}-y l$ Acetate 21a.-A mixture of compound 20c ($5.3 \mathrm{~g}, 29.1 \mathrm{mmol}$), o-xylene- α, α^{\prime}-diol $(10 \mathrm{~g}, 72.4$ $\mathrm{mmol})$ and p - $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(0.40 \mathrm{~g})$ in toluene $\left(50 \mathrm{~cm}^{3}\right)$ was heated and refluxed through a column of mol. sieves $4 \AA(30 \mathrm{~g})$ under slightly reduced pressure for 3 h . (The reflux temperature was kept at $70-75^{\circ} \mathrm{C}$ by controlling the pressure.) After cooling, the solution was poured into saturated aq. NaHCO_{3} and was extracted with diethyl ether. The extract was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated under reduced pressure. The residue was purified by SiO_{2} column chromatography to give compound $21 \mathrm{a}(7.62 \mathrm{~g}, 87 \%$) as a viscous oil (Found: $\mathrm{C}, 71.2 ; \mathrm{H}, 7.2 . \mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{4}$ requires $\mathrm{C}, 71.50 ; \mathrm{H}, 7.33 \%$); $[\alpha]_{\mathrm{D}}^{23}$ $+58.5^{\circ}\left(c 0.47, \mathrm{CHCl}_{3}\right) ; v_{\max }($ film $) / \mathrm{cm}^{-1} 3060,3030,1495,1295$, $1210,1155,1005,1040,955,870$ and $750 ; \delta_{\mathrm{H}}\left(60 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $1.10\left(3 \mathrm{H}, \mathrm{s}, 4^{\prime}-\mathrm{Me}\right), 1.00-2.30\left(6 \mathrm{H}, \mathrm{m}, 3^{\prime}-, 5^{\prime}-\right.$ and $\left.7^{\prime}-\mathrm{H}_{2}\right), 2.00(3$ $\mathrm{H}, \mathrm{s}, \mathrm{AcO}), 2.70\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 4,1^{\prime}-\mathrm{H}\right), 4.50(1 \mathrm{H}, \mathrm{d}, J 14$, $\mathrm{ArCHHO}), 4.67\left(2 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{2} \mathrm{O}\right), 4.71(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14$, $\mathrm{ArCHHO}), 4.90\left(1 \mathrm{H}\right.$, br m, $\left.6^{\prime}-\mathrm{H}\right)$ and $7.00(4 \mathrm{H}$, br m, ArH).
(1'R,4'S,6'S)-Spiro-\{1,5-dihydro-2,4-benzodioxepine-3, 2^{\prime}-(4'methylbicyclo 2.2 .1$]$ heptan- 6^{\prime}-ol $\left.)\right\}$ 21b.-A solution of compound $21 \mathrm{a}(18.1 \mathrm{~g}, 59.9 \mathrm{mmol})$ and sodium methoxide $(28 \% \mathrm{in}$
$\mathrm{MeOH}, 3 \mathrm{~cm}^{3}$) in MeOH ($150 \mathrm{~cm}^{3}$) was stirred under Ar at $30^{\circ} \mathrm{C}$. After 4 h , the reaction mixture was neutralized (universal indicator) by addition of acetic acid and the resulting solution was concentrated under reduced pressure. The residue was diluted with water and extracted with diethyl ether. The extract was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated under reduced pressure. The residue (17.8 g) was recrystallized three times from hexane-EtOAc (5:1) to give the pure alcohol 21b ($12.5 \mathrm{~g}, 80 \%$), m.p. 102-102.5 ${ }^{\circ}$ (leaflets) (Found: $\mathrm{C}, 73.6 ; \mathrm{H}, 7.7 . \mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{3}$ requires $\mathrm{C}, 73.82 ; \mathrm{H}, 7.74 \%$); $[\alpha]_{\mathrm{D}}^{23.5}-44.4^{\circ}\left(c \quad 1.59, \mathrm{CHCl}_{3}\right) ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3500,1320$, $1165,1145,1110,1050,1025$ and $955 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.12$ ($3 \mathrm{H}, \mathrm{s}, 4^{\prime}-\mathrm{Me}$), $1.18\left(1 \mathrm{H}, \mathrm{dt}, J 13\right.$ and $\left.4,5^{\prime}-\mathrm{H}\right), 1.24(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J$ $\left.10.8,3^{\prime}-\mathrm{H}\right), 1.54-1.63\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right.$ and OH$), 1.81\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 7^{\prime}-\right.$ $\left.\mathrm{H}_{2}\right), 2.00\left(1 \mathrm{H}, \mathrm{tm}, J 12,5^{\prime}-\mathrm{H}\right), 2.58\left(1 \mathrm{H}\right.$, br d, $\left.J 4.3,1^{\prime}-\mathrm{H}\right), 4.10(1$ $\mathrm{H}, \mathrm{d}, J 11, \mathrm{ArCHHO}), 4.26\left(1 \mathrm{H}, \mathrm{tt}, J 4.3,10.8,6^{\prime}-\mathrm{H}\right), 4.77(1 \mathrm{H}, \mathrm{d}$, $J 14.7, \mathrm{ArCH} \mathrm{HO}), 4.93(2 \mathrm{H}, \mathrm{br} \mathrm{d}, J 16, \mathrm{ArCHHO} \times 2)$ and 7.05-7.25 ($4 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$. For the determination of its enantiomeric purity, compound 21b was converted into the corresponding (R) - and (S)-MTPA esters in the usual manner. ${ }^{20}$ HPLC analysis revealed the product to be 100% ee [column, NUCLEOSIL ${ }^{\circledR} 50-5,25 \mathrm{~cm} \times 4.6 \mathrm{~mm}$ diam.; solvent, hexaneTHF ($20: 1$), $1.0 \mathrm{~cm}^{3} \mathrm{~min}^{-1}$; detected at 254 nm$](S)$-MTPA ester, $t_{\mathrm{R}} 20.6 \mathrm{~min}$ (single peak) and (R)-MTPA ester, $t_{\mathrm{R}} 25.6 \mathrm{~min}$ (single peak).
($1^{\prime} \mathrm{R}, 4 \mathrm{4}$) -Spiro- $\{1,5$-dihydro-2,4-benzodioxepine-3,2'-(4'-methylbicyclo[2.2.1]heptan-6'-one)\} 22.-To an ice-cooled, stirred mixture of the alcohol $\mathbf{2 1 b}(8.3 \mathrm{~g}, 31.9 \mathrm{mmol})$, sodium acetate ($3.92 \mathrm{~g}, 47.8 \mathrm{mmol}$), and powdered mol. sieves $3 \AA$ (10.3 g) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(220 \mathrm{~cm}^{3}\right)$ was added portionwise PCC ($10.3 \mathrm{~g}, 47.8 \mathrm{mmol}$). After the addition, the ice-bath was removed and the resulting slurry was stirred overnight at room temperature. To the reaction mixture were added Florisil (20 g) and diethyl ether ($250 \mathrm{~cm}^{3}$) and the mixture was filtered through a Florisil column. The filter-cake was washed with diethyl ether and the combined filtrate and washings were concentrated under reduced pressure. The residue was recrystallized to give the ketone 22 (7.45 g). The mother liquor was concentrated under reduced pressure and the residue was purified by SiO_{2} column chromatography followed by recrystallization to give ketone $22(0.52 \mathrm{~g})$ (total $7.97 \mathrm{~g}, 97 \%$), m.p. $125-125.5^{\circ} \mathrm{C}$ [from hexane-EtOAc (5:1), as rods] (Found: C, 74.25; H, 7.0. $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{3}$ requires $\mathrm{C}, 74.40 ; \mathrm{H}, 7.02 \%$); $[\alpha]_{\mathrm{D}}^{24}+52.8^{\circ}$ (c 1.33, $\left.\mathrm{CHCl}_{3}\right) ; v_{\max }($ Nujol $) / \mathrm{cm}^{-1} 1750,1085$ and $1020 ; \delta_{\mathrm{H}^{-}}$ ($100 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) 1.31 ($3 \mathrm{H}, \mathrm{s}, 4^{\prime}-\mathrm{Me}$), $1.55-2.15\left(6 \mathrm{H}, \mathrm{m}, 3^{\prime}-\right.$, $5^{\prime}-$ and $\left.7^{\prime}-\mathrm{H}_{2}\right), 2.98\left(1 \mathrm{H}\right.$, br s, $\left.1^{\prime}-\mathrm{H}\right), 4.82(4 \mathrm{H}$, br s, $\mathrm{ArCH}_{2} \mathrm{O} \times 2$) and 6.95-7.25 (4 H, m, ArH).
($1^{\prime} \mathrm{R}, 4^{\prime} \mathrm{R}, 5^{\prime} \mathrm{R}$)-Spiro- $\{1,5$-dihydro-2,4-benzodioxepine-3,2'($4^{\prime}, 5^{\prime}$-dimethylbicyclo $\left[2.2 .1\right.$ heptan- 6^{\prime}-one $\left.)\right\}$ 23.-To a solution of diisopropylamine ($6.0 \mathrm{~cm}^{3}, 42.9 \mathrm{mmol}$) in dry THF $\left(40 \mathrm{~cm}^{3}\right)$ at -30 to $-20^{\circ} \mathrm{C}$ was added dropwise $\operatorname{BuLi}\left(1.53 \mathrm{~mol} \mathrm{dm}^{-3}\right.$ in hexane; $26.8 \mathrm{~cm}^{3}, 41.0 \mathrm{mmol}$) under Ar. Then HMPA ($14.3 \mathrm{~cm}^{3}$, 82.2 mmol) was added to the LDA solution and the mixture was stirred for 30 min at $-30^{\circ} \mathrm{C}$. To the solution at $-78^{\circ} \mathrm{C}$ was added dropwise a solution of ketone $22(10.0 \mathrm{~g}, 38.7 \mathrm{mmol})$ in dry THF $\left(50 \mathrm{~cm}^{3}\right)$. The temperature was gradually raised from -78 to $-5^{\circ} \mathrm{C}$ during 2 h . To this solution at -30 to $-20^{\circ} \mathrm{C}$ was added iodomethane (93% purity; $3.24 \mathrm{~cm}^{3}, 48.4 \mathrm{mmol}$) and the mixture was stirred for 2 h at -10 to $0^{\circ} \mathrm{C}$ before being poured into water and extracted with diethyl ether. The extract was washed successively with water, saturated aq. NaHCO_{3} and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated under reduced pressure. The crude product was purified by SiO_{2} column chromatography followed by recrystallization to give compound $23(8.44 \mathrm{~g}, 80 \%)$. The starting material (1.72 g) was recovered by chromatography followed by recrystallization
from hexane-EtOAc (5:1). The yield of title compound 23, considering the recovery of starting material 22, was 97%, m.p. $95.0-96.0^{\circ} \mathrm{C}$ (plates) (Found: C, 74.8; H, 7.4. $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{3}$ requires C, $74.97 ; \mathrm{H}, 7.40 \%$); $[\alpha]_{\mathrm{D}}^{21.5}+41.9^{\circ}\left(c 1.98, \mathrm{CHCl}_{3}\right)$; $v_{\max }($ Nujol $) / \mathrm{cm}^{-1} 1745,1374,1265,1130,1100$ and 1035 ; $\delta_{\mathrm{H}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.05\left(3 \mathrm{H}, \mathrm{d}, J 7.6,5^{\prime}-\mathrm{Me}\right), 1.20\left(3 \mathrm{H}, \mathrm{s}, 4^{\prime}-\right.$ $\mathrm{Me}), 1.65-2.20\left(5 \mathrm{H}, \mathrm{m}, 3^{\prime}-\right.$ and $7^{\prime}-\mathrm{H}_{2}$ and $\left.5^{\prime}-\mathrm{H}\right), 2.93(1 \mathrm{H}$, br s, $\left.1^{\prime}-\mathrm{H}\right), 4.83\left(4 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{ArCH}_{2} \mathrm{O} \times 2\right)$ and $6.95-7.25(4 \mathrm{H}, \mathrm{m}$, ArH).
($1^{\prime} \mathrm{R}, 4^{\prime} \mathrm{R}, 5^{\prime} \mathrm{S}$)-Spiro- 11,5 -dihydro-2,4-benzodioxepine-3,2'($3^{\prime}, 4^{\prime}$-dimethylbicyclo $[2.2 .1]$ heptan- 6^{\prime}-one $\left.)\right\}$ 24.-To a stirred solution of $\mathrm{HN}(\mathrm{TMS})_{2}\left(4.03 \mathrm{~cm}^{3}, 19.1 \mathrm{mmol}\right)$ in dry THF (15 cm^{3}) at -15 to $0^{\circ} \mathrm{C}$ was added $\operatorname{BuLi}\left(1.53 \mathrm{~mol} \mathrm{dm}^{-3}\right.$ in hexane; $\left.11.7 \mathrm{~cm}^{3}, 17.9 \mathrm{mmol}\right)$ under Ar. After the mixture had been stirred at $0{ }^{\circ} \mathrm{C}$ for $30 \mathrm{~min}, \mathrm{HMPA}\left(3.1 \mathrm{~cm}^{3}, 17.8 \mathrm{mmol}\right)$ and a solution of compound $23(3.25 \mathrm{~g}, 11.9 \mathrm{mmol})$ in dry THF ($14 \mathrm{~cm}^{3}$) were added successively to the solution at room temperature, and the mixture was stirred at $40^{\circ} \mathrm{C}$. After 10 h , the starting material had disappeared on TLC. The reaction was quenched by dropwise addition of saturated aq. ammonium chloride to the mixture cooled at -15 to $0^{\circ} \mathrm{C}$. The reaction mixture was diluted with water and extracted with diethyl ether. The extract was washed successively with water, saturated aq. NaHCO_{3} and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated under reduced pressure. The residue was purified by SiO_{2} column chromatography and recrystallization to give compound $24\left(3.20 \mathrm{~g}, 98 \%\right.$), m.p. $122.0-123.0^{\circ} \mathrm{C}$ (from hexane, as needles) (Found: C, 74.6; H, 7.3\%); [$\alpha]_{D}^{22}+50.7^{\circ}$ (c 1.29, CHCl_{3}); $v_{\max }($ Nujol $) / \mathrm{cm}^{-1} 1741,1140,1099,1035$ and $755 ; \delta_{\mathrm{H}}(100 \mathrm{MHz}$; CDCl_{3}) $1.06\left(3 \mathrm{H}, \mathrm{d}, J 7,5^{\prime}-\mathrm{Me}\right), 1.21\left(3 \mathrm{H}, \mathrm{s}, 4^{\prime}-\mathrm{Me}\right), 1.20-2.20(5$ $\mathrm{H}, \mathrm{m}, 3^{\prime}-$ and $7^{\prime}-\mathrm{H}_{2}$ and $\left.5^{\prime}-\mathrm{H}\right), 2.98\left(1 \mathrm{H}, \mathrm{br}, 1^{\prime}-\mathrm{H}\right), 4.82(4 \mathrm{H}, \mathrm{br}$ $\mathrm{s}, \mathrm{ArCH}_{2} \mathrm{O} \times 2$) and $6.95-7.25(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$.
($1^{\prime} \mathrm{R}, 2^{\prime} \mathrm{R}, 5^{\prime} \mathrm{R}$)-Spiro $\{1,5$-dihydro-2,4-benzodioxepine-3,6' ($1^{\prime}, 2^{\prime}$-dimethylbicyclo[3.2.1]octan-4'-one) $\}$ 26.-A solution of lithium 2,2,6,6-tetramethylpiperidide (LiTMP) was prepared by dropwise addition of $\mathrm{BuLi}\left(1.59 \mathrm{~mol} \mathrm{dm}^{-3}\right.$ in hexane; $60.7 \mathrm{~cm}^{3}$, 96.5 mmol) to a solution of $2,2,6,6$-tetramethylpiperidine (16.3 $\left.\mathrm{cm}^{3}, 96.6 \mathrm{mmol}\right)$ in dry THF $\left(80 \mathrm{~cm}^{3}\right)$ at -10 to $0^{\circ} \mathrm{C}$ under Ar. The LiTMP solution was added dropwise to a stirred solution of compound $24(8.20 \mathrm{~g}, 30.1 \mathrm{mmol})$ and $\mathrm{CH}_{2} \mathrm{Br}_{2}\left(6.34 \mathrm{~cm}^{3}, 90.3\right.$ mmol) in dry THF ($300 \mathrm{~cm}^{3}$) at -100 to $-85^{\circ} \mathrm{C}$ under Ar during 20 min . After being stirred at -100 to $-95^{\circ} \mathrm{C}$ for 1.5 h the reaction mixture was quenched at -100 to $-90^{\circ} \mathrm{C}$ by dropwise addition of a solution of acetic acid ($9.05 \mathrm{~g}, 151 \mathrm{mmol}$) in THF ($50 \mathrm{~cm}^{3}$) during 20 min . The resulting mixture was poured into water and extracted with CHCl_{3}. The extract was washed successively with water, saturated aq. NaHCO_{3} and brine, dried (MgSO_{4}), filtered, and concentrated under reduced pressure. The residue was chromatographed over SiO_{2} to give compound 25 ($10.5 \mathrm{~g}, 78 \%$) and the starting material (1.21 g recovery). The recovered starting material 24 was resubmitted to the same reaction to give a further crop of product $25(1.7 \mathrm{~g}$; total $12.2 \mathrm{~g}, 90 \%), \delta_{\mathrm{H}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.02(3 \mathrm{H}, \mathrm{d}, J 7$, $\left.5^{\prime}-\mathrm{Me}\right), 1.11\left(3 \mathrm{H}, \mathrm{s}, 4^{\prime}-\mathrm{Me}\right), 1.28\left(1 \mathrm{H}, \mathrm{dm} J 11,7^{\prime}-\mathrm{H}\right), 1.56(1 \mathrm{H}$, $\left.\mathrm{dm}, J 13,3^{\prime}-\mathrm{H}\right), 1.62\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}\right), 1.75(1 \mathrm{H}, \mathrm{dd}, J 2$ and 11 , $\left.7^{\prime}-\mathrm{H}\right), 2.02\left(1 \mathrm{H}\right.$, dd, $J 3$ and $\left.13,3^{\prime}-\mathrm{H}\right), 2.79\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 1^{\prime}-\mathrm{H}\right), 4.80$ ($1 \mathrm{H}, \mathrm{d}, J 15, \mathrm{ArCHHO}$), 4.91 ($1 \mathrm{H}, \mathrm{d}, J 15$, ArCHHO), 4.96 ($2 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{2} \mathrm{O}$), $5.50(1 \mathrm{H}, \mathrm{d}, J 2, \mathrm{OH}$, exchangeable with $\mathrm{D}_{2} \mathrm{O}, t_{\frac{1}{2}}$ ca. 1.5 h$), 5.70\left(1 \mathrm{H}, \mathrm{d}, J 2, \mathrm{CHBr}_{2}\right.$, changed into a singlet at $\delta 5.69$ by the $\mathrm{D}_{2} \mathrm{O}$ addition) and $7.03-7.30(4 \mathrm{H}$, m, ArH).

To a stirred solution of intermediate $25(12.0 \mathrm{~g}, 26.9 \mathrm{mmol})$ in dry THF $\left(360 \mathrm{~cm}^{3}\right)$ at -95 to $-90^{\circ} \mathrm{C}$ was added dropwise MeLi ($1.0 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ in diethyl ether; $26.9 \mathrm{~cm}^{3}, 26.9 \mathrm{mmol}$) under Ar during 10 min . After the mixture had been stirred at $-95^{\circ} \mathrm{C}$ for $15 \mathrm{~min}, \mathrm{BuLi}$ ($1.59 \mathrm{~mol} \mathrm{dm}^{-3}$ in hexane; $18.6 \mathrm{~cm}^{3}$,
29.6 mmol) was added to the reaction mixture at -95 to $-90^{\circ} \mathrm{C}$ during 15 min , and the mixture was stirred for 1 h at -95 C . Then the cooling bath was removed and the temperature was allowed to rise to ambient during 30 min . The reaction was quenched by dropwise addition of a solution of acetic acid ($1.68 \mathrm{~g}, 28.0 \mathrm{mmol}$) in THF ($10 \mathrm{~cm}^{3}$). The resulting mixture was poured into water and extracted with diethyl ether. The extract was washed successively with water, saturated aq. NaHCO_{3} and brine, dried (MgSO_{4}), filtered, and concentrated under reduced pressure. The residue was chromatographed over SiO_{2} and recrystallized from hexane-EtOAc (10:1) to give compound 26 ($3.30 \mathrm{~g}, 42.8 \%$). The mother liquor was evaporated and the residue was chromatographed $\left(\mathrm{SiO}_{2}\right)$ again to give a further crop $(0.94 \mathrm{~g}, 12.2 \%$; total $4.24 \mathrm{~g}(55 \%)$] of compound 26, m.p. 139.5-141.0 ${ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 75.5 ; \mathrm{H}, 7.8$. $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{3}$ requires $\mathrm{C}, 75.50 ; \mathrm{H}, 7.74 \%$); $[\alpha]_{\mathrm{D}}^{15}-51.0^{\circ}$ (c 1.44 , $\left.\mathrm{CHCl}_{3}\right) ; v_{\max }($ Nujol $) / \mathrm{cm}^{-1} 1719,1122,1040$ and $754 ; \delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.93\left(3 \mathrm{H}, \mathrm{d}, J 6.5,2^{\prime}-\mathrm{Me}\right), 1.14\left(3 \mathrm{H}, \mathrm{s}, 1^{\prime}-\mathrm{Me}\right)$, $1.72\left(1 \mathrm{H}, \mathrm{dd}, J 2.2\right.$ and $\left.12.3,8^{\prime}-\mathrm{H}\right), 1.80\left(1 \mathrm{H}, \mathrm{d}, J 14.3,7^{\prime}-\mathrm{H}\right), 1.84$ $\left(1 \mathrm{H}, \mathrm{ddq}, J 7.1,11.2\right.$ and $\left.6.5,2^{\prime}-\mathrm{H}\right), 2.15(1 \mathrm{H}$, dd, $J 4.8$ and 12.3 , $\left.8^{\prime}-\mathrm{H}\right), 2.28\left(1 \mathrm{H}\right.$. dd, $J 2.2$ and $\left.14.3,7^{\prime}-\mathrm{H}\right), 2.33(1 \mathrm{H}, \mathrm{dd}, J 11.2$ and $\left.16.7,3^{\prime}-\mathrm{H}\right), 2.37\left(1 \mathrm{H}, \mathrm{dd}, J 7.1\right.$ and $\left.16.7,3^{\prime}-\mathrm{H}\right), 3.09(1 \mathrm{H}, \mathrm{d}, J$ $\left.4.8,5^{\prime}-\mathrm{H}\right), 4.73(1 \mathrm{H}, \mathrm{d}, J 14.9, \mathrm{ArCH} \mathrm{HO}), 4.81(2 \mathrm{H}, \mathrm{s}$, $\left.\operatorname{ArCH} \mathrm{H}_{2} \mathrm{O}\right), 4.84(1 \mathrm{H}, \mathrm{d}, J 14.9, \mathrm{ArCHHO}), 7.03(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, 7.08 ($1 \mathrm{H} . \mathrm{m}, \mathrm{ArH}$) and 7.14-7.20 (2 H, m, ArH).
($1^{\prime} \mathrm{R}, 2^{\prime} \mathrm{R}, 4^{\prime} \mathrm{S}, 5^{\prime} \mathrm{R}$)-Spiro- $\left\{1,5\right.$-dihydro-2,4-benzodioxepine- $3,6^{\prime}$ ($1^{\prime}, 2^{\prime}$-dimethylbicyclo[3.2.1]octan-4'-ol) \} 27.-To an ice-cooled solution of compound $26(3.10 \mathrm{~g}, 10.8 \mathrm{mmol})$ in THF ($31 \mathrm{~cm}^{3}$) was added dropwise a solution of $\mathrm{NaBH}_{4}(0.82 \mathrm{~g}, 21.7 \mathrm{mmol})$ in ethanol ($16 \mathrm{~cm}^{3}$). After being stirred at $0^{\circ} \mathrm{C}$ for 3 h the reaction mixture was evaporated, diluted with water, and extracted with diethyl ether. The extract was washed successively with water, saturated aq. NaHCO_{3}, and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated under reduced pressure. The residue was chromatographed over SiO_{2} and recrystallized to give the alcohol $27(2.78 \mathrm{~g}, 89 \%)$. The mother liquor was evaporated and the residue was chromatographed $\left(\mathrm{SiO}_{2}\right)$ again to give a further crop ($0.23 \mathrm{~g}, 7.4 \%$) of compound 27 (total $3.01 \mathrm{~g}, 96 \%$), m.p. 127-127.5 C [from hexane-EtOAc (4:1), as rods] (Found: C, $74.8 ; \mathrm{H}, 8.4 . \mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{3}$ requires $\mathrm{C}, 74.97 ; \mathrm{H}, 8.39 \%$); $[\alpha]_{\mathrm{D}}^{18.5}$ $-119^{\circ}\left(c 2.25, \mathrm{CHCl}_{3}\right) ; v_{\max }(\mathrm{Nujol}) / \mathrm{cm}^{-1} 3570,1076,1028$ and $834 ; \delta_{\mathbf{H}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.93\left(3 \mathrm{H}, \mathrm{d}, J 6,2^{\prime}-\mathrm{Me}\right), 1.11(3 \mathrm{H}$, s, $\left.1^{\prime}-\mathrm{Me}\right), 1.15-2.25\left(7 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}, 3^{\prime}-, 7^{\prime}-\right.$ and $\left.8^{\prime}-\mathrm{H}_{2}\right), 2.59(1 \mathrm{H}$, br t, $\left.J 8,5^{\prime}-\mathrm{H}\right), 3.34(1 \mathrm{H}, \mathrm{d}, J 11, \mathrm{OH}), 3.75\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right), 4.72$ ($1 \mathrm{H}, \mathrm{d}, J 15, \mathrm{ArCH} \mathrm{HO}), 4.90(1 \mathrm{H}, \mathrm{d}, J 15, \mathrm{ArCH} \mathrm{HO}), 5.15$ $(2 \mathrm{H}, \mathrm{d}, J 15, \mathrm{ArCHHO} \times 2)$ and $7.05-7.38(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$.
(1R,2R,4S,5R)-4-Hydroxy-1,2-dimethylbicyclo[3.2.1]octan-6one 28a.-A mixture of compound $27(2.92 \mathrm{~g}, 10.1 \mathrm{mmol})$ and $10 \% \mathrm{Pd}-\mathrm{C}(150 \mathrm{mg})$ in EtOAc $\left(40 \mathrm{~cm}^{3}\right)$ was stirred vigorously under Ar at room temperature. After 40 min , the starting material had disappeared on TLC. The catalyst was removed by filtration through Celite $-\mathrm{SiO}_{2}$ and the filter-cake was washed with EtOAc. Combined filtrate and washings were concentrated under reduced pressure and the residue was recrystallized from hexane-EtOAc (4:1) to give compound 28a $\left(1.69 \mathrm{~g}, 99 \%\right.$), m.p. $110-110.5^{\circ} \mathrm{C}$ (rods) (Found: C, 71.4: H, 9.5 . $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{2}$ requires $\mathrm{C}, 71.39 ; \mathrm{H}, 9.59 \%$); $[\alpha]_{\mathrm{D}}^{17.5}-80.9^{\circ}$ (c 1.09 , $\left.\mathrm{CHCl}_{3}\right) ; v_{\max }($ Nujol $) / \mathrm{cm}^{-1} 3470,1728,1235,1076$ and 1039; $\delta_{\mathrm{H}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.87(3 \mathrm{H}, \mathrm{d}, J 7,2-\mathrm{Me}), 1.13(3 \mathrm{H}, \mathrm{s}$, $1-\mathrm{Me}), 1.58(1 \mathrm{H}, \mathrm{dd}, J 3$ and $12,8-\mathrm{H}), 1.55-2.20(6 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$, $3-\mathrm{H}_{2}, 7-\mathrm{H}, 8-\mathrm{H}$ and OH$), 1.69(1 \mathrm{H}, \mathrm{dd}, J 3$ and $19,7-\mathrm{H}), 2.51$ $(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J 3.6,5-\mathrm{H})$ and $3.84(1 \mathrm{H}$, ddd, $J 3.5,6$ and 11.5, 4-H).
(1R,2R,4S,5R)-4-(1-Ethoxyethoxy)-1,2-dimethylbicyclo[3.2.1]-octan-6-one 28b.-To an ice-cooled, stirred solution of the
alcohol 28 a ($5.72 \mathrm{~g}, 34.0 \mathrm{mmol}$) in ethyl vinyl ether $\left(60 \mathrm{~cm}^{3}\right)$ was added $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(5 \mathrm{mg})$ and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 40 min . To the reaction mixture was then added saturated aq. NaHCO_{3}, and ethyl vinyl ether was evaporated off. The resulting mixture was extracted with diethyl ether. The extract was washed successively with water, saturated aq. NaHCO_{3}, and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated under reduced pressure. The residue was purified by SiO_{2} column chromatography and vacuum distillation to give the ether ketone 28b (8.17 g , quant.), b.p. $103-110^{\circ} \mathrm{C} / 0.6 \mathrm{mmHg}$ (Found: $\mathrm{C}, 69.7 ; \mathrm{H}, 9.9 . \mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{3}$ requires $\mathrm{C}, 69.96 ; \mathrm{H}, 10.06 \%$); n_{D}^{18} 1.4662; $[\alpha]_{\mathrm{D}}^{18}-143^{\circ}\left(c 2.00, \mathrm{CHCl}_{3}\right) ; v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 1748$, 1170, 1136, 1084 and $1070 ; \delta_{\mathrm{H}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.86(3 \mathrm{H}, \mathrm{d}$, $J 6.5,2-\mathrm{Me}), 1.10(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me}), 1.19\left(3 \mathrm{H}, \mathrm{t}, J 7.1, M e \mathrm{CH}_{2}\right), 1.31$ $\left(\frac{3}{2} \mathrm{H}, \mathrm{d}, J 5.4, \mathrm{OCH} M e \mathrm{O}\right), 1.34\left(\frac{3}{2} \mathrm{H}, \mathrm{d} J 5.4, \mathrm{OCHMeO}\right), 1.40-$ $2.05\left(6 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}, 3-\mathrm{H}_{2}, 7-\mathrm{H}\right.$ and $\left.8-\mathrm{H}_{2}\right), 2.19(1 \mathrm{H}, \mathrm{dd}, J 3$ and $15,7-\mathrm{H}), 2.57(1 \mathrm{H}$, br t, J 3.5, $5-\mathrm{H}), 3.30-3.96(3 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$ and $\left.\mathrm{MeCH})_{2}\right), 4.82\left(\frac{1}{2} \mathrm{H}, \mathrm{q}, J 5.4, \mathrm{OCH} \mathrm{MeO}\right)$ and $4.89\left(\frac{1}{2} \mathrm{H}, \mathrm{q}, J\right.$ $5.4, \mathrm{OCH} \mathrm{MeO}$).
(1S,2R,4S,5R,7S)-4-(1-Ethoxyethoxy)-1,2,7-trimethylbicyclo-[3.2.1]octan-6-one 29.-A stirred suspension of $\mathrm{NaH}(60 \%$ oil dispersion; $2.00 \mathrm{~g}, 50 \mathrm{mmol}$) in a solution of compound $\mathbf{2 8 b}$ $(8.02 \mathrm{~g}, 33.4 \mathrm{mmol})$ in dry THF $\left(120 \mathrm{~cm}^{3}\right)$ was heated under reflux under Ar. After 4 h , generation of H_{2} gas ceased. To the cooled reaction mixture at -5 to $0^{\circ} \mathrm{C}$ was added dropwise MeI (93% purity; $3.35 \mathrm{~cm}^{3}, 50 \mathrm{mmol}$), and the mixture was stirred at -5 to $0^{\circ} \mathrm{C}$ for 30 min before being poured into icewater and extracted with diethyl ether. The extract was washed successively with water, saturated aq. NaHCO_{3}, and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated under reduced pressure. The residue was purified by SiO_{2} column chromatography and vacuum distillation to give compound $29(8.01 \mathrm{~g}, 94 \%)$, b.p. $101-103^{\circ} \mathrm{C} / 0.75 \mathrm{mmHg}$ (Found: $\mathrm{C}, 70.5 ; \mathrm{H}, 10.1$. $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{3}$ requires $\mathrm{C}, 70.83 ; \mathrm{H}, 10.30 \%$); $n_{\mathrm{D}}^{20} 1.4661$; $[\alpha]_{\mathrm{D}}^{20}$ $-139^{\circ}\left(c 1.35, \mathrm{CHCl}_{3}\right) ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 2990,1744,1135,1075$ and $1035 ; \delta_{\mathrm{H}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.83(3 \mathrm{H}, \mathrm{d}, J 6.4,2$ - or $7-\mathrm{Me})$ $0.98(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me}), 0.98(3 \mathrm{H}, \mathrm{d}, J 7.7,7-$ or $2-\mathrm{Me}), 1.18\left(\frac{3}{2} \mathrm{H}, \mathrm{t}, J\right.$ 7.0, $\left.M e \mathrm{CH}_{2}\right), 1.19\left(\frac{3}{2} \mathrm{H}, \mathrm{t}, J 7.0, M e \mathrm{CH}_{2}\right), 1.31\left(\frac{3}{2} \mathrm{H}, \mathrm{d}, J\right.$ $5.4, \mathrm{OCHMeO}), 1.34\left(\frac{3}{2} \mathrm{H}, \mathrm{d}, J 5.4, \mathrm{OCHMeO}\right), 1.40-2.10(6 \mathrm{H}$, $\mathrm{m}, 2-\mathrm{H}, 3-\mathrm{H}_{2}, 7-\mathrm{H}$ and $\left.8-\mathrm{H}_{2}\right), 2.53(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J 3,5-\mathrm{H}), 3.30-4.00$ $\left(3 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}\right.$ and $\left.\mathrm{MeCH}_{2}\right), 4.81\left(\frac{1}{2} \mathrm{H}, \mathrm{q}, J 5.4, \mathrm{OCH} \mathrm{MeO}\right)$ and $4.89\left(\frac{1}{2} \mathrm{H}, \mathrm{q}, J 5.4, \mathrm{OCH} \mathrm{MeO}\right)$.
(1S,2R,4S,5R)-4-(1-Ethoxyethoxy)-1,2,7-trimethyl-6-(trimeth-ylsiloxy)bicyclo[3.2.1]oct-6-ene 30.-A stirred suspension of $\mathrm{NaH}(60 \%$ oil dispersion; $2.47 \mathrm{~g}, 61.8 \mathrm{mmol}$) in a solution of compound 29 ($7.85 \mathrm{~g}, 30.9 \mathrm{mmol}$) in dry THF ($140 \mathrm{~cm}^{3}$) was heated under reflux under Ar. After 15 h , generation of H_{2} gas ceased. To the cooled reaction mixture at -40 to $-30^{\circ} \mathrm{C}$ was added dropwise a mixture of $\mathrm{TMSCl}\left(5.13 \mathrm{~cm}^{3}, 37.0 \mathrm{mmol}\right)$ and $\mathrm{Et}_{3} \mathrm{~N}\left(2.15 \mathrm{~cm}^{3}, 15.5 \mathrm{mmol}\right)$ in dry THF ($20 \mathrm{~cm}^{3}$). After being stirred for 30 min at -5 to $0^{\circ} \mathrm{C}$ the reaction mixture was carefully poured into a vigorously stirred mixture of ice, water, and pentane and was extracted with pentane. The extract was washed successively with water and saturated aq. NaHCO_{3}, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated under reduced pressure. The residue was distilled to give bis-ether $30(9.94 \mathrm{~g}$, 99%), b.p. $95-101^{\circ} \mathrm{C} / 0.65 \mathrm{mmHg}$ (Found: $\mathrm{C}, 67.2 ; \mathrm{H}, 9.8$. $\mathrm{C}_{18} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{Si}$ requires $\mathrm{C}, 67.19 ; \mathrm{H}, 9.89 \%$); $n_{\mathrm{D}}^{18} 1.4584 ;[\alpha]_{\mathrm{D}}^{18}$ -75.2° (c 0.54, pentane); $v_{\max }($ film $) / \mathrm{cm}^{-1} 1669,1253,1105$, 860 and $845 ; \delta_{\mathbf{H}}\left(100 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6}\right) 0.26\left(\frac{9}{2} \mathrm{H}, \mathrm{s}, \mathrm{Me}_{3} \mathrm{Si}\right), 0.29$ $\left(\frac{9}{2} \mathrm{H}, \mathrm{s}, \mathrm{Me}_{3} \mathrm{Si}\right), 0.82(3 \mathrm{H}, \mathrm{d}, J 6.5,2-\mathrm{Me}), 1.01(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me})$, $1.20\left(3 \mathrm{H}, \mathrm{t}, J 7.1, M e \mathrm{CH}_{2}\right), 1.34\left(\frac{3}{2} \mathrm{H}, \mathrm{d}, J 5.4, \mathrm{OCH} M e \mathrm{O}\right), 1.39$ ($\frac{3}{2} \mathrm{H}, \mathrm{d}, J 5.4, \mathrm{OCHMeO}$), $1.70(3 \mathrm{H}, \mathrm{d}, J 2.7,7-\mathrm{Me}), 1.00-2.15$ ($5 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$ and 3 - and $8-\mathrm{H}_{2}$), $2.51(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.25-3.85$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{MeCH}_{2}\right), 3.73(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 4.73\left(\frac{1}{2} \mathrm{H}, \mathrm{q}, J 5.4\right.$, $\mathrm{OCHMeO})$ and $4.85\left(\frac{1}{2} \mathrm{H}, \mathrm{q}, J 5.4, \mathrm{OC} H \mathrm{MeO}\right)$.

Determination of the Absolute Configuration by the Measurement of the CD Spectrum of (1R,4R)-4-Methylbicyclo[2.2.1] hept-5-en-2-one 31.-To an ice-cooled, stirred solution of compound 21 b ($42 \mathrm{mg}, 0.16 \mathrm{mmol}$), DMAP (trace amount, $\sim 3 \mathrm{mg}$), and triethylamine ($0.1 \mathrm{~cm}^{3}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\left(1 \mathrm{~cm}^{3}\right)$ was added $\mathrm{MsCl}\left(37 \mathrm{~mm}^{3}, 0.48 \mathrm{mmol}\right)$. After being stirred for 1 h at $0^{\circ} \mathrm{C}$ the reaction mixture was poured into water and extracted with diethyl ether. The extract was washed successively with water, saturated aq. NaHCO_{3}, and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated under reduced pressure to give the crude mesyl derivative of compound $21 \mathbf{b}$ (57 mg), $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} 1355$ and 1175.

The crude mesyl ester (56 mg) and DBU (80 mg) were dissolved in toluene ($1.5 \mathrm{~cm}^{3}$) and the solution was heated under reflux for 2 days. After cooling, the reaction mixture was poured into water and extracted with diethyl ether. The extract was washed successively with water, saturated aq. NaHCO_{3}, and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated under reduced pressure to give a crude crystalline product (31 mg), $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1620,1420,735$ and 715 , which was used for the next deprotection reaction without further purification.

The crude crystalline compound (27 mg) was dissolved in acetone-water ($10: 1 ; 1 \mathrm{~cm}^{3}$), and PPTS (10 mg) was added to the solution. After being stirred for 8 h at room temperature the reaction mixture was poured into water and extracted with diethyl ether. The extract was washed successively with saturated aq. NaHCO_{3} and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated under reduced pressure at low temperature $\left(0^{\circ} \mathrm{C}\right)$. The residue was purified by SiO_{2} column chromatography to give compound 31 ($11 \mathrm{mg}, 66 \%$ from 21 b) (Found: M^{+}, 122.0766. $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}$ requires $M, 122.0731$); $v_{\max }($ film $) / \mathrm{cm}^{-1} 1740$ and $1620 ; \delta_{\mathrm{H}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.42(3 \mathrm{H}, \mathrm{s}, 4-\mathrm{Me}), 1.65-2.15$ ($4 \mathrm{H}, \mathrm{m}, 3-$ and $7-\mathrm{H}_{2}$), $3.02(1 \mathrm{H}$, br m, $1-\mathrm{H}), 6.09(1 \mathrm{H}, \mathrm{dd}, J$ 3.5 and $5.5,6-\mathrm{H})$ and $6.26(1 \mathrm{H}, \mathrm{d}, J 5.5,5-\mathrm{H}) ; \Delta \varepsilon(\lambda)$ [2.15 $\times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$ in 'isooctane' (2,2,4-trimethylpentane)] $+9.12(287 \mathrm{~nm}),+14.2(297),+17.3$ (308) and +11.9 (319). Comparison of the CD spectral data of compound 31 with the reported data of $(1 R, 4 R)$-bicyclo[2.2.1]hept-5-en-2one ${ }^{19}$ revealed the stereochemistry of compound 31 to be $1 R, 4 R$.
(1S,2R,4S,5R,7R)-7-[(1R,3RS)-3-(t-Butyldimethylsiloxy)-4$\{(1 \mathrm{~S}, 2 \mathrm{~S}, 4 \mathrm{~S})-2-(1-$ ethoxyethoxy $)$-3,3-dimethyl-7-oxabicyclo[2.2.1] heptan-1-yl $\}$-1-hydroxybuty $]$]-4-(1-ethoxyethoxy)-1,2,7-trimethylbicyclo[3.2.1]octan-6-one 36a.-To a stirred solution of compound $30(6.70 \mathrm{~g}, 20.5 \mathrm{mmol})$ in dry diethyl ether (25 $\left.\mathrm{cm}^{3}\right)$ at $5-10^{\circ} \mathrm{C}$ was added dropwise a solution of $\mathrm{MeLi}(1.00$ mol dm^{-3} in diethyl ether; $21.5 \mathrm{~cm}^{3}, 21.5 \mathrm{mmol}$) under Ar. After the mixture had been stirred at $0-5^{\circ} \mathrm{C}$ for 35 min a solution of ZnCl_{2} in dry diethyl ether (prepared according to House's procedure; ${ }^{25} 0.652 \mathrm{~mol} \mathrm{dm}^{-3} ; 33.0 \mathrm{~cm}^{3}, 21.5 \mathrm{mmol}$) was added dropwise to the reaction mixture at -5 to $0^{\circ} \mathrm{C}$. After the mixture had been stirred at -10 to $-5^{\circ} \mathrm{C}$ for 30 min , a solution of the aldehyde $12(8.10 \mathrm{~g}, 19.5 \mathrm{mmol})$ in dry diethyl ether (25 cm^{3}) was added dropwise to the reaction mixture at -20 to $-15^{\circ} \mathrm{C}$. After the addition, the reaction mixture was stirred at $-20^{\circ} \mathrm{C}$ for 1 h and at $-50^{\circ} \mathrm{C}$ for 2 h , and then was quenched at -65 to $-60^{\circ} \mathrm{C}$ by dropwise addition of a solution of acetic acid (1.29 g) in diethyl ether $\left(5 \mathrm{~cm}^{3}\right)$. The resulting mixture was poured into a stirred mixture of icewater ($100 \mathrm{~cm}^{3}$) and 29% aq. $\mathrm{NH}_{4} \mathrm{OH}\left(20 \mathrm{~cm}^{3}, \sim 340 \mathrm{mmol}\right)$ and extracted with diethyl ether. The extract was washed successively with water, saturated aq. $\mathrm{NaHCO}_{3}(\times 2)$ and brine, dried (MgSO_{4}), filtered quickly through a small column of a little SiO_{2} (Merck Kieselgel 60 reinst, Art. 7754; ca. 15 g), and concentrated under reduced pressure to give a crude mixture of compounds 12,32 and $36 \mathrm{a}\left(14.2 \mathrm{~g}\right.$), $v_{\text {max }}($ film $) / \mathrm{cm}^{-1}$ 3470 and 1736. This was immediately employed for the next
step without further purification to avoid the retro-aldol reaction to give compounds $\mathbf{1 2}$ and 32.
(1S,2R,4S,5R,7R)-7-[(1R,3RS)-3-(t-Butyldimethylsiloxy)-1-(diethoxyphosphonylacetoxy)-4-\{(1S,2S,4S)-2-(1-ethoxyethoxy)-3,3-dimethyl-7-oxabicyclo[2.2.1.]heptan-1-yl\} butyl]-4-(1-ethoxyethoxy)-1,2,7-trimethylbicyclo[3.2.1]octan-6-one * 36b.-To an ice-cooled, stirred mixture of the crude mixture of compound 36a (and $12+32)(13.9 \mathrm{~g}, \leqslant 20.8 \mathrm{mmol})$ and DCC $(4.29 \mathrm{~g}, 20.8 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(150 \mathrm{~cm}^{3}\right)$ was added a solution of diethylphosphonoacetic acid (diethoxy phosphonylacetic acid) $(4.08 \mathrm{~g})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(30 \mathrm{~cm}^{3}\right)$. After the mixture had been stirred for 1 h at room temperature, diethyl ether (150 cm^{3}) was added to the reaction mixture, which was then stirred at $0^{\circ} \mathrm{C}$ for 10 min . The resulting slurry was filtered, and the filter-cake was washed with diethyl ether. The combined filtrate and washings were evaporated, diluted with hexane-diethyl ether $\left(1: 1 ; 200 \mathrm{~cm}^{3}\right)$ and stirred at $0^{\circ} \mathrm{C}$ for 10 min . Precipitates were filtered off and the filtrate was evaporated under reduced pressure. The residue was chromatographed over SiO_{2}. Compound 12 ($3.35 \mathrm{~g}, 42 \%$ recovery) was recovered, and compounds 32 ($2.15 \mathrm{~g}, 42 \%$ from 30) and 36 b ($10.02 \mathrm{~g}, 62 \%$) were obtained. Compound 32 could be converted into the bisether 30 in 83% yield in the same manner as described for the conversion of compound 29 into compound 30 (35% recovery). Aldol reaction, followed by diethyl phosphonoacetylation of the recovered substrates $12(3.28 \mathrm{~g})$ and $30(3.87 \mathrm{~g})$, gave a further crop (3.28 g , total $13.3 \mathrm{~g}, 82 \%$ in two steps) of compound 36b, $v_{\max }($ film $) / \mathrm{cm}^{-1} 1735,1265,1215$ and $1028 ; \delta_{\mathbf{H}}(100$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.05\left(2 \mathrm{H}, \mathrm{s}\right.$, minor $\left.\mathrm{Me}_{2} \mathrm{Si}\right), 0.09(4 \mathrm{H}, \mathrm{s}$, major $\left.\mathrm{Me}_{2} \mathrm{Si}\right), 0.89\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{3} \mathrm{C}\right), 0.95-1.45(33 \mathrm{H}, \mathrm{m}, \mathrm{Me} \times 11)$, $1.45-2.35\left\{13 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}, 3-\mathrm{H}_{2}, 8-\mathrm{H}_{2}, 7-\left(2-\mathrm{H}_{2}\right), 7-\left(4-\mathrm{H}_{2}\right), 7-[4-(5-\right.$ $\left.\left.\mathrm{H}_{2}\right)\right]$ and $\left.7-\left[4-\left(6-\mathrm{H}_{2}\right)\right]\right\}, 2.60(1 \mathrm{H}$, br m, $5-\mathrm{H}), 2.86,2.88,2.92$ and 2.97 (total $\left.2 \mathrm{H}, 4 \times \mathrm{d}, J 20, \mathrm{PCH}_{2}\right), 3.15\left\{\frac{2}{3} \mathrm{H}\right.$, s, major $7-[4-$ $(2-\mathrm{H})]\}, 3.32\left\{\frac{1}{3} \mathrm{H}, \mathrm{s}\right.$, minor $\left.7-[4-(2-\mathrm{H})]\right\}, 3.35-4.30\{11 \mathrm{H}, \mathrm{m}, 4-$ $\mathrm{H}, 7-(3-\mathrm{H}), 7-[4-(4-\mathrm{H})]$ and $\left.\mathrm{MeCH} \mathrm{O}_{2} \mathrm{O} \times 4\right\}, 4.45-4.69(1 \mathrm{H}, \mathrm{m}$, OCHMeO), $4.81\left(\frac{1}{2} \mathrm{H}, \mathrm{q}, J 6, \mathrm{OC} H \mathrm{MeO}\right), 4.86\left(\frac{1}{2} \mathrm{H}, \mathrm{q}, J 6\right.$, $\mathrm{OCH} \mathrm{MeO})$ and $5.10-5.35$ [1 H, br m, $7-(1-\mathrm{H})]$. This was employed for the next step without further purification.
(1S,6R,7S,8S,9R,11S)-6-[2(RS)-(t-Butyldimethylsiloxy)-3-\{(1S,2S,4S)-2-(1-ethoxyethoxy)-3,3-dimethyl-7-oxabicyclo-[2.2.1]heptan-1-yl\}propyl]-11-(1-ethoxyethoxy)-7,8,9-tri-methyl-5-oxatricyclo[6.3.1.0 ${ }^{2,7}$]dodec-2-en-4-one 37.-To an ice-cooled, stirred solution of the phosphonate $\mathbf{3 6 b}(9.95 \mathrm{~g}, 11.7$ $\mathrm{mmol})$ in dry THF $\left(150 \mathrm{~cm}^{3}\right)$ was added $\mathrm{NaH}(60 \%$ oil dispersion; $0.59 \mathrm{~g}, 14.8 \mathrm{mmol}$) under Ar. After the addition, the ice-bath was replaced with a water-bath at room temperature, and the mixture was stirred for 15 h at room temperature. The reaction mixture was poured into water and extracted with diethyl ether. The extract was washed successively with water, saturated aq. NaHCO_{3}, and brine, dried (MgSO_{4}), filtered, and concentrated under reduced pressure. The residue was purified by SiO_{2} column chromatography to give tricyclo $37(6.82 \mathrm{~g}, 84 \%)$ (Found: $\mathrm{C}, 66.6 ; \mathrm{H}, 10.5 . \mathrm{C}_{39} \mathrm{H}_{68} \mathrm{O}_{8} \mathrm{Si}$ requires $\mathrm{C}, 66.21 ; \mathrm{H}$, 10.49%); $[\alpha]_{\mathrm{D}}^{18}-5.71^{\circ}$ (c $1.07, \mathrm{CHCl}_{3}$); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1}$ $1730,1655,1256$ and $1234 ; \delta_{\mathrm{H}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.01(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{Me}_{2} \mathrm{Si}\right), 0.06\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{2} \mathrm{Si}\right), 0.86\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{3} \mathrm{C}\right), 0.90-1.40$ $(27 \mathrm{H}, \mathrm{m}, 9 \times \mathrm{Me}), 1.40-2.30\left\{13 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}, 10-\mathrm{and} 12-\mathrm{H}_{2}\right.$, $6-\left(1-\mathrm{H}_{2}\right), 6-\left(3-\mathrm{H}_{2}\right), 6-\left[3-\left(5-\mathrm{H}_{2}\right)\right]$ and $\left.6-\left[3-\left(6-\mathrm{H}_{2}\right)\right]\right\}, 2.94(1 \mathrm{H}$, br m, 1-H), $3.17\left\{\frac{2}{3} \mathrm{H}, \mathrm{s}\right.$, major $\left.6-[3-(2-\mathrm{H})]\right\}, 3.20-4.45\left\{\frac{25}{3} \mathrm{H}, \mathrm{m}\right.$, $6-$ and $11-\mathrm{H}, 6-(2-\mathrm{H})$, 6-[3-(4-H)], minor $6-[3-(2-\mathrm{H})]$ and $\left.\mathrm{CH}_{2} \mathrm{Me} \times 2\right\}, 4.63(1 \mathrm{H}, \mathrm{q}, J 6, \mathrm{OCHMeO}), 4.80\left(\frac{1}{2} \mathrm{H}, \mathrm{q}, J 6\right.$, $\mathrm{OCH} \mathrm{MeO}), 4.86\left(\frac{1}{2} \mathrm{H}, \mathrm{q}, J 6, \mathrm{OCH} \mathrm{MeO}\right), 5.73\left(\frac{1}{2} \mathrm{H}, \mathrm{s}, 3-\mathrm{H}\right)$ and $5.78\left(\frac{1}{2} \mathrm{H}, \mathrm{s}, 3-\mathrm{H}\right)$.

[^1](1R,3RS)-3-(t-Butyldimethylsiloxy)-4-\{(1S,2S,4S)-2-(1-eth-oxyethoxy)-3,3-dimethyl-7-oxabicyclo[2.2.1]heptan-1-yl\}-1$\{(1 \mathrm{~S}, 2 \mathrm{~S}, 4 \mathrm{R}, 5 \mathrm{~S}, 6 \mathrm{~S})-2-(1$-ethoxyethoxy)-7-[(Z)-2-hydroxyethylid-ene]-4,5,6-trimethylbicyclo[3.2.1]octan-6-yl\}butan-1-ol 38a.To a stirred suspension of $\mathrm{CaCl}_{2}(6.51 \mathrm{~g}, 58.7 \mathrm{mmol})$ in dry $\mathrm{EtOH}\left(120 \mathrm{~cm}^{3}\right)$ was added portionwise $\mathrm{NaBH}_{4}(4.44 \mathrm{~g}, 117$ mmol) at room temperature. The resulting slurry was stirred at $30-40^{\circ} \mathrm{C}$ for 15 min , and a solution of lactone $37(8.13 \mathrm{~g}, 11.7$ mmol) in dry $\mathrm{EtOH}\left(30 \mathrm{~cm}^{3}\right)$ was added dropwise to the mixture at room temperature. After being stirred at room temperature for 2.5 h the reaction mixture was poured into icewater and extracted four times with diethyl ether. The extract was washed successively with water and saturated aq. NaHCO_{3}, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated under reduced pressure. The residue was chromatographed over SiO_{2} to give compound 38a as an amorphous solid (8.37 g) (Found: C , $67.0 ; \mathrm{H}, 10.3 . \mathrm{C}_{39} \mathrm{H}_{72} \mathrm{O}_{8} \mathrm{Si}$ requires $\mathrm{C}, 67.20 ; \mathrm{H}, 10.32 \%$); $[\alpha]_{\mathrm{D}}^{18}$ $-18.1^{\circ}\left(c \quad 1.04, \quad \mathrm{CHCl}_{3}\right) ; \quad v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} \quad 3480$ and 838 ; $\delta_{\mathrm{H}}{ }^{*}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.09,0.12$ and 0.16 (total $6 \mathrm{H}, 3 \mathrm{~s}$, $\left.\mathrm{Me}_{2} \mathrm{Si}\right), 0.92\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{3} \mathrm{C}\right), 0.95-1.40(27 \mathrm{H}, \mathrm{m}, \mathrm{Me} \times 9), 1.40-$ $2.50\left\{15 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}, 3-\right.$ and $8-\mathrm{H}_{2}, 6-\left(2-\mathrm{H}_{2}\right), 6-\left(4-\mathrm{H}_{2}\right), 6-[4-(5-$ $\left.\left.\mathrm{H}_{2}\right)\right], 6-\left[4-\left(6-\mathrm{H}_{2}\right)\right]$ and $\left.\mathrm{OH} \times 2\right\}, 2.55-2.75(1 \mathrm{H}$, br $\mathrm{m}, 1-\mathrm{H})$, $3.14,3.19$ and $3.36\{$ total $1 \mathrm{H}, 3 \mathrm{~s}, 6-[4-(2-\mathrm{H})]\}, 3.53(4 \mathrm{H}, \mathrm{q}, J 6$, $\left.\mathrm{CH}_{2} \mathrm{Me} \times 2\right), 3.79\{1 \mathrm{H}$, br d, $J 4,6-[4-(4-\mathrm{H})]\}, 3.20-4.50[5 \mathrm{H}$, $\mathrm{m}, 2-\mathrm{H}, 6-(1-\mathrm{H}), 6-(3-\mathrm{H})$ and $\left.=\mathrm{CHCH}_{2} \mathrm{OH}\right], 4.56\left(\frac{1}{2} \mathrm{H}, \mathrm{q}, J 6\right.$, OCHMeO), $4.61\left(\frac{1}{2} \mathrm{H}, \mathrm{q}, J 6, \mathrm{OCHMeO}\right), 4.78\left(\frac{1}{2} \mathrm{H}, \mathrm{q}, J 6\right.$, OCH MeO $), 4.89\left(\frac{1}{2} \mathrm{H}, \mathrm{q}, J 6, \mathrm{OCHMMO}\right), 5.72\left(\frac{1}{2} \mathrm{H}\right.$, br t,$J 8$, $\mathrm{C}=\mathrm{CH})$ and $5.92\left(\frac{1}{2} \mathrm{H}\right.$, br $\left.\mathrm{t}, J 8, \mathrm{C}=\mathrm{CH}\right)$.

2-\{(1S,2R,4S,5S,7S)-7-[(1R,3RS)-3-(t-Butyldimethylsiloxy)-4-\{(1S,2S,4S)-2-(1-ethoxyethoxy)-3,3-dimethyl-7-oxabicyclo-[2.2.1]heptan-1-yl\}-1-hydroxybutyl]-4-(1-ethoxyethoxy)-1,2,7-trimethylhicyclo[3.2.1]octan-6(Z)-ylidene\}ethyl Pivalate 38b.To an ice-cooled solution of diol 38 a (8.14 g .11 .7 mmol) in triethylamine ($7 \mathrm{~cm}^{3}$)-dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(50 \mathrm{~cm}^{3}\right)$ was added pivaloyl chloride ($1.80 \mathrm{~cm}^{3}, 14.6 \mathrm{mmol}$) and the mixture was stirred at room temperature for 3.5 h . Excess of acid chloride was destroyed by dropwise addition of $\mathrm{MeOH}\left(0.2 \mathrm{~cm}^{3}\right)$ to the mixture at $0{ }^{\circ} \mathrm{C}$, and the solution was stirred for 10 min , poured into water, and extracted with diethyl ether. The extract was washed successively with water, saturated aq. $\mathrm{NaHCO}_{3}(\times 2)$, and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated under reduced pressure. The residue was chromatographed over SiO_{2} to give monoester $\mathbf{3 8 b}(8.50 \mathrm{~g}, 95 \%$ from 37) as an amorphous solid (Found: $\mathrm{C}, 67.7 ; \mathrm{H}, 10.4 . \mathrm{C}_{44} \mathrm{H}_{80} \mathrm{O}_{9} \mathrm{Si}$ requires $\mathrm{C}, 67.65$; $\mathrm{H}, 10.32 \%):[\alpha]_{\mathrm{D}}^{21}+13.0^{\circ}\left(c 0.945, \mathrm{CHCl}_{3}\right) ; v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1}$ $3500,1728,1280$ and $1150 ; \delta_{\mathrm{H}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.08,0.09$, 0.11 and 0.14 (total $\left.6 \mathrm{H}, 4 \mathrm{~s}, \mathrm{Me}_{2} \mathrm{Si}\right), 0.88\left(6 \mathrm{H}, \mathrm{s}\right.$, major $\left.\mathrm{Me}_{3} \mathrm{CSi}\right)$, $0.91\left(3 \mathrm{H}, \mathrm{s}\right.$, minor $\left.\mathrm{Me}_{3} \mathrm{CSi}\right), 1.20\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{3} \mathrm{CO}\right), 0.92-1.40$ ($27 \mathrm{H}, \mathrm{m}, \mathrm{Me} \times 9$), 1.40-2.35 \{14 H, m, 2-H, 3- and $8-\mathrm{H}_{2}, 7$-(2$\left.\mathrm{H}_{2}\right), 7-\left(4-\mathrm{H}_{2}\right), 7-\left[4-\left(5-\mathrm{H}_{2}\right)\right], 7-\left[4-\left(6-\mathrm{H}_{2}\right)\right]$ and OH$\}, 2.55-2.75(1$ $\mathrm{H}, \mathrm{br} \mathrm{m}, 5-\mathrm{H}), 3.13,3.17$ and 3.34 \{total $1 \mathrm{H}, 3 \mathrm{~s}, 7-[4-(2-\mathrm{H})]\}$, $3.35-3.85\left\{7 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}, 7-(1-\mathrm{H}), 7-[4-(4-\mathrm{H})]\right.$ and $\left.\mathrm{CH}_{2} \mathrm{Me} \times 2\right\}$, $4.00-4.40[1 \mathrm{H}$, br m, $7-(3-\mathrm{H})], 4.50-4.95\left(4 \mathrm{H}, \mathrm{m},=\mathrm{CHCH}_{2} \mathrm{O}\right.$ and $\mathrm{OCH} \mathrm{MeO} \times 2), 5.54\left(\frac{2}{3} \mathrm{H}, \mathrm{t}, J 7\right.$, minor $\left.\mathrm{C}=\mathrm{CH}\right)$ and $5.75\left(\frac{1}{3}\right.$ $\mathrm{H}, \mathrm{t}, J 7$, minor $\mathrm{C}=\mathrm{CH}$).

2-\{(1S,2R,4S,5S,7S)-7-\{(1R,3RS)-3-(t-Butyldimethylsiloxy)-4-\{(1S,2S,4S)-2-(1-ethoxyethoxy)-3,3-dimethyl-7-oxabicyclo-[2.2.1]heptan-1-yl\}-1-[2-(trimethylsilyl)ethoxymethoxy]butyl\}-4-(1-ethoxye thoxy)-1,2,7-trimethylbicyclo $[3.2 .1]$ octan $-6(Z)$ ylidene\}ethyl Pivalate 38c.-A mixture of hydroxy ester 38b $(8.32 \mathrm{~g} . \quad 10.7 \mathrm{mmol})$, chloro(trimethylsilylethoxy)methane $(\mathrm{SEMCl})(5.33 \mathrm{~g}, 32.0 \mathrm{mmol}), \mathrm{Bu}_{4} \mathrm{NBr}(687 \mathrm{mg}, 2.13 \mathrm{mmol})$ and

[^2]diisopropylethylamine $(6.88 \mathrm{~g}, 53.2 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50$ cm^{3}) was stirred and heated under reflux under Ar. After 13 h , further diisopropylethylamine (3.0 g) was added to the reaction mixture. After 3.5 days, further $\mathrm{SEMCl}(1.0 \mathrm{~g})$ was added. The mixture was stirred and refluxed for 5 days in all before being ice-cooled, and saturated aq. NaHCO_{3} was added dropwise. After being stirred for 5 min , the mixture was poured into water and extracted twice with diethyl ether. The extract was washed successively with water, saturated aq. NaHCO_{3}, and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated under reduced pressure. The residue was chromatographed over SiO_{2} to give compound $38 \mathbf{c}(8.61 \mathrm{~g}, 89 \%$) and recovered substrate $\mathbf{3 8 b}$ (530 $\mathrm{mg}, 6.4 \%$ recovery). The recovered substrate $\mathbf{3 8 b}$ was employed for the same reaction again, and a further crop ($0.46 \mathrm{~g}, 4.7 \%$) of product 38c was obtained (total $9.17 \mathrm{~g}, 94 \%$) as an amorphous solid (Found: C, 66.0; $\mathrm{H}, 10.4 . \mathrm{C}_{50} \mathrm{H}_{94} \mathrm{O}_{10} \mathrm{Si}_{2}$ requires $\mathrm{C}, 65.89$; $\mathrm{H}, 10.39 \%) ;[\alpha]_{\mathrm{D}}^{16.5}+57.2^{\circ}\left(c 0.78, \mathrm{CHCl}_{3}\right) ; v_{\text {max }}(\mathrm{film}) / \mathrm{cm}^{-1}$ $1730,1252,1090,1028$ and $860 ; \delta_{\mathrm{H}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.01$ $\left(6 \mathrm{H}, \mathrm{s}\right.$, major $\left.\mathrm{Me}_{3} \mathrm{Si}\right), 0.02\left(3 \mathrm{H}, \mathrm{s}\right.$, minor $\left.\mathrm{Me}_{3} \mathrm{Si}\right), 0.08,0.09,0.11$ (total $6 \mathrm{H}, 3 \mathrm{~s}, \mathrm{Me}_{2} \mathrm{Si}$), $0.87\left(6 \mathrm{H}\right.$, s, major $\left.\mathrm{Me}_{3} \mathrm{CSi}\right), 0.90(3 \mathrm{H}, \mathrm{s}$, minor $\left.\mathrm{Me}_{3} \mathrm{CSi}\right), 0.95-1.35\left(29 \mathrm{H}, \mathrm{m}, 9 \times \mathrm{Me}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{Si}\right), 1.27$ $\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{3} \mathrm{CCO}\right), 1.35-2.35\left\{13 \mathrm{H}, 2-\mathrm{H}, 3-\right.$ and $8-\mathrm{H}_{2}, 7-\left(2-\mathrm{H}_{2}\right)$, $7-\left(4-\mathrm{H}_{2}\right), 7-\left[4-\left(5-\mathrm{H}_{2}\right)\right]$ and $\left.7-\left[4-\left(6-\mathrm{H}_{2}\right)\right]\right\}, 2.55-2.70(1 \mathrm{H}, \mathrm{br}$ m, $5-\mathrm{H}), 3.17\left\{\frac{2}{3} \mathrm{H}, \mathrm{s}\right.$, major $\left.7-[4-(2-\mathrm{H})]\right\}, 3.25-3.87\left\{\frac{28}{3} \mathrm{H}, \mathrm{m}\right.$, $4-\mathrm{H}, 7-(1-\mathrm{H})$, minor $7-[4-(2-\mathrm{H})], 7-[4-(4-\mathrm{H})], \mathrm{SiCH}_{2} \mathrm{CH}_{2}$ and $\left.\mathrm{CH}_{2} \mathrm{Me} \times 2\right\}, 4.05-4.25[1 \mathrm{H}, \mathrm{br} \mathrm{m}, 7-(3-\mathrm{H})], 4.33(1 \mathrm{H}, \mathrm{d}, J 8$, ОСННО), $4.53(1 \mathrm{H}, \mathrm{d}, J 8, \mathrm{OCHHO}), 4.45-4.90(2 \mathrm{H}, \mathrm{m}$, $\mathrm{OCHH} \mathrm{MeO} \times 2), 4.86\left(2 \mathrm{H}, \mathrm{d}, J 7,=\mathrm{CHCH}_{2} \mathrm{O}\right), 5.40\left(\frac{1}{2} \mathrm{H}, \mathrm{t}, J\right.$ $7, \mathrm{C}=\mathrm{CH})$ and $5.61\left(\frac{1}{2} \mathrm{H}, \mathrm{t}, J 7, \mathrm{C}=\mathrm{CH}\right)$.

2-\{(1S,2R,4S,5S,7S)-7-\{(1R,3RS)-3-(t-Butyldimethylsiloxy)-4-\{(1S,2S,4S)-2-(1-ethoxyethoxy)-3,3-dimethyl-7-oxabicyclo-[2.2.1]heptan-1-yl $\}-1-[2-($ trimethylsilyl)ethoxymethoxy]butyl $\}$ -4-(1-ethoxyethoxy)-1,2,7-trimethylbicyclo[3.2.1]octan-6(Z)-ylidene\}ethanol 38d.-To a stirred solution of compound 38c $(9.05 \mathrm{~g}, 9.93 \mathrm{mmol})$ in dry diethyl ether $\left(50 \mathrm{~cm}^{3}\right)$ at $-20^{\circ} \mathrm{C}$ was added dropwise $\mathrm{MeLi}\left(1.0 \mathrm{~mol} \mathrm{dm}{ }^{-3}\right.$ in ether; $23.8 \mathrm{~cm}^{3}, 23.8$ mmol) under Ar. After the addition the mixture was stirred at $-20^{\circ} \mathrm{C}$ for 30 min , poured into a stirred mixture of ice and saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$, and extracted with diethyl ether. The extract was washed successively with water, saturated aq. NaHCO_{3}, and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated under reduced pressure. The residue was chromatographed over SiO_{2} to give compound $38 \mathrm{~d}(7.64 \mathrm{~g}, 93 \%$) as an amorphous solid (Found: $\mathrm{C}, 65.0 ; \mathrm{H}, 10.4 . \mathrm{C}_{45} \mathrm{H}_{86} \mathrm{O}_{9} \mathrm{Si}_{2}$ requires $\mathrm{C}, 65.33 ; \mathrm{H}$, 10.48%) ; $[\alpha]_{\mathrm{D}}^{14}+11.2^{\circ}\left(c \quad 0.99, \quad \mathrm{CHCl}_{3}\right) ; \quad v_{\text {max }}(\mathrm{film}) / \mathrm{cm}^{-1}$ 3480 and $1125 ; \delta_{\mathrm{H}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.01\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{3} \mathrm{Si}\right)$, $0.09\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{2} \mathrm{Si}\right), 0.10\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{2} \mathrm{Si}\right), 0.88(6 \mathrm{H}, \mathrm{s}$, major $\mathrm{Me}_{3} \mathrm{CSi}$), 0.90 ($3 \mathrm{H}, \mathrm{s}$, minor $\mathrm{Me}_{3} \mathrm{CSi}$), 0.95-1.40 (29 H , m, $\mathrm{Me} \times 9$ and $\left.\mathrm{CH}_{2} \mathrm{Si}\right), 1.40-2.30\left\{14 \mathrm{H}, 2-\mathrm{H}, 3-\right.$ and $8-\mathrm{H}_{2}, 7-(2-$ $\left.\mathrm{H}_{2}\right), 7-\left(4-\mathrm{H}_{2}\right), 7-\left[4-\left(5-\mathrm{H}_{2}\right)\right], 7-\left[4-\left(6-\mathrm{H}_{2}\right)\right]$ and OH$\}, 2.55-2.70$ (1 H, br m, 5-H), $3.18\left\{\frac{2}{3} \mathrm{H}\right.$, s, major $\left.7-[4-(2-\mathrm{H})]\right\}, 3.33\left\{\frac{1}{3} \mathrm{H}\right.$, s, minor $7-[4-(2-\mathrm{H})]\}, 3.10-4.30\{12 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}, 7-(1-\mathrm{H}), 7-(3-\mathrm{H})$, $7-[4-(4-\mathrm{H})],=\mathrm{CHCH}_{2} \mathrm{O}, \mathrm{SiCH}_{2} \mathrm{CH}_{2}$ and $\left.\mathrm{CH}_{2} \mathrm{Me} \times 2\right\}, 4.35-$ $4.73\left(3 \mathrm{H}, \mathrm{m}, \mathrm{OCHMeO}\right.$ and $\left.\mathrm{OCH}_{2} \mathrm{O}\right), 4.79\left(\frac{1}{2} \mathrm{H}, \mathrm{q}, J 6\right.$, $\mathrm{OCH} \mathrm{MeO}), 4.88\left(\frac{1}{2} \mathrm{H}, \mathrm{q}, J 6, \mathrm{OC} H \mathrm{MeO}\right)$ and $5.50-5.85(1 \mathrm{H} \mathrm{m}$, $\mathrm{C}=\mathrm{CH}$).

2-\{(1S,2R,4S,5S,7S)-7-\{(1R,3RS)-3-(t-Butyldimethylsiloxy)-4-\{(1S,2S,4S)-2-(1-ethoxyethoxy)-3,3-dimethyl-7-oxabicyclo-[2.2.1]heptan-1-yl \}-1-[2-(trimethylsilyl)ethoxymethoxy]butyl $\}$ -4-(1-ethoxyetho.xy)-1,2,7-trimethylbicyclo[3.2.1]octan-6(Z)ylidene\}acetaldehyde 39. To a stirred solution of oxalyl dichloride ($1.16 \mathrm{~cm}^{3}, 13.5 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~cm}^{3}\right)$ at $-78{ }^{\circ} \mathrm{C}$ was added dropwise a solution of DMSO $\left(1.92 \mathrm{~cm}^{3}\right.$, $27.0 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(6 \mathrm{~cm}^{3}\right)$ under Ar. After 15 min at $-78{ }^{\circ} \mathrm{C}$, the mixture was treated with a solution of compound 38d $(5.60 \mathrm{~g}, 6.77 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~cm}^{3}\right)$ and the mixture
was stirred at the same temperature for 30 min . To the resulting mixture at $-78{ }^{\circ} \mathrm{C}$ was added dropwise $\mathrm{Et}_{2} \mathrm{~N}\left(4.15 \mathrm{~cm}^{3}, 29.8\right.$ mmol) and the mixture was stirred for 30 min at $-78^{\circ} \mathrm{C}$ and for 30 min at -10 to $-5^{\circ} \mathrm{C}$ before being poured into water and extracted with diethyl ether. The extract was washed successively with water, saturated aq. NaHCO_{3}, and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated under reduced pressure. The residue was chromatographed over SiO_{2} to give the aldehyde 39 ($5.35 \mathrm{~g}, 96 \%$) as an amorphous solid (Found: C, $65.5 ; \mathrm{H}, 10.2 . \mathrm{C}_{45} \mathrm{H}_{84} \mathrm{O}_{9} \mathrm{Si}_{2}$ requires $\mathrm{C}, 65.49 ; \mathrm{H}, 10.26 \%$); $[\alpha]_{\mathrm{D}}^{26}+51.5^{\circ}\left(c \quad 0.795, \mathrm{CHCl}_{3}\right) ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1670$ and 1620; $\delta_{\mathrm{H}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.00\left(\frac{9}{2} \mathrm{H}, \mathrm{s}, \mathrm{Me}_{3} \mathrm{Si}\right), 0.01\left(\frac{9}{2} \mathrm{H}, \mathrm{s}\right.$, $\left.\mathrm{Me}_{3} \mathrm{Si}\right), 0.08$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{2} \mathrm{Si}$), $0.10\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{2} \mathrm{Si}\right), 0.88\left(\frac{9}{2} \mathrm{H}, \mathrm{s}\right.$, $\left.\mathrm{Me}_{3} \mathrm{C}\right), 0.90\left(\frac{9}{2} \mathrm{H}, \mathrm{s}, \mathrm{Me}_{3} \mathrm{C}\right), 0.92-1.45(29 \mathrm{H}, \mathrm{m}, \mathrm{Me} \times 9$ and $\left.\mathrm{CH}_{2} \mathrm{Si}\right), 1.45-2.40\left\{13 \mathrm{H}, 2-\mathrm{H}, 3-\right.$ and $8-\mathrm{H}_{2}, 7-\left(2-\mathrm{H}_{2}\right), 7-\left(4-\mathrm{H}_{2}\right)$, $7-\left[4-\left(5-\mathrm{H}_{2}\right)\right]$ and $\left.7-\left[4-\left(6-\mathrm{H}_{2}\right)\right]\right\}, 2.70-2.85(1 \mathrm{H}, \mathrm{br}$ m, $5-\mathrm{H}), 3.18$ $\left\{\frac{2}{3} \mathrm{H}\right.$, s, major 7-[4-(2-H)]\}, 3.23-3.85 $\left\{\frac{28}{3} \mathrm{H}, \mathrm{m}, 4-\mathrm{H}, 7-(1-\mathrm{H})\right.$, minor 7 -[4-(2-H)], $7-[4-(4-\mathrm{H})], \mathrm{SiCH}_{2} \mathrm{CH}_{2}$ and $\mathrm{CH}_{2} \mathrm{Me} \times 2$?, 4.05-4.48 [3 H, m, 7-(3-H) and $\left.\mathrm{OCH}_{2} \mathrm{O}\right], 4.50-4.73(1 \mathrm{H}, \mathrm{m}$, $\mathrm{OC} H \mathrm{MeO}), 4.79\left(\frac{1}{2} \mathrm{H}, \mathrm{q}, J 6, \mathrm{OC} H \mathrm{MeO}\right), 4.87\left(\frac{1}{2} \mathrm{H}, \mathrm{q}, J 6\right.$, $\mathrm{OC} H \mathrm{MeO})$, $5.94\left(\frac{2}{3} \mathrm{H}, \mathrm{d}, J 9, \mathrm{C}=\mathrm{CH}\right), 6.13\left(\frac{1}{3} \mathrm{H}, \mathrm{br}, \mathrm{d}, J 9\right.$, $\mathrm{C}=\mathrm{CH})$ and $10.01(1 \mathrm{H}, 3 \mathrm{~d}, J 9, \mathrm{CHO})$.

2-(Trimethylsilyl)ethyl 2-\{(1S,2R,4S,5S,7S)-7-\{(1R,3RS)-3-(t-Butyldimethylsiloxy)-4-\{(1S,2S,4S)-2-(1-ethoxyethoxy)-3,3-di-methyl-7-oxabicyclo[2.2.1]heptan-1-yl\}-1-[2-(trimethylsilyl)ethoxymethoxy]butyl \}-4-(1-ethoxyethoxy)-1,2,7-trimethylbicyc$10[3.2 .1]$ octan- $6(\mathrm{Z})$-ylidene\}acetate 40a.-A mixture of aldehyde 39 ($3.46 \mathrm{~g}, 4.19 \mathrm{mmol}$), $\mathrm{NaH}_{2} \mathrm{PO}_{4}(10.5 \mathrm{~g}, 67.3 \mathrm{mmol}$), $\mathrm{NaClO}_{2}(12.1 \mathrm{~g}, 134 \mathrm{mmol})$, 2-methylbut-2-ene ($42 \mathrm{~cm}^{3}$), t-butyl alcohol $\left(9.5 \mathrm{~cm}^{3}\right)$ and water $\left(30 \mathrm{~cm}^{3}\right)$ was stirred vigorously at room temperature for 1 h . The reaction mixture was diluted with water and extracted with diethyl ether. The extract was washed successively with 10% aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, water, and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated under reduced pressure to give the crude carboxylic acid (3.92 g) as an amorphous solid, $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3500-2500,1730$ and 1635 .
To an ice-cooled, stirred solution of the crude carboxylic acid (3.92 g), 2-(trimethylsilyl)ethanol ($606 \mathrm{mg}, 5.12 \mathrm{mmol}$) and triphenylphosphine ($1.41 \mathrm{~g}, 5.38 \mathrm{mmol}$) in dry THF ($36 \mathrm{~cm}^{3}$) was added dropwise diethyl azodicarboxylate (DEAD) (844 $\mathrm{mm}^{3}, 5.36 \mathrm{mmol}$). The reaction mixture was stirred at room temperature for 3 h and concentrated under reduced pressure. The residue was diluted with diethyl ether $\left(50 \mathrm{~cm}^{3}\right)$ and hexane ($40 \mathrm{~cm}^{3}$), and a small crystal of triphenylphosphine oxide was added as a seed to the stirred solution. When precipitates appeared, the mixture was left overnight in a refrigerator. Crystalline triphenylphosphine oxide was filtered off and the filter-cake was washed with hexane-diethyl ether (1:1). The combined filtrate and washings were concentrated under reduced pressure and the residue was chromatographed over SiO_{2} to give ester 40a ($3.24 \mathrm{~g}, 82 \%$ in 2 steps) (Found: C, 63.4; $\mathrm{H}, 10.1 . \mathrm{C}_{50} \mathrm{H}_{96} \mathrm{O}_{10} \mathrm{Si}_{3}$ requires C, $63.78 ; \mathrm{H}, 10.28 \%$); $[\alpha]_{\mathrm{D}}^{26.5}$ $+23.3^{\circ}\left(c 1.02, \mathrm{CHCl}_{3}\right) ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1718,1635,1250$, and $1160 ; \delta_{\mathrm{H}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.00-0.10\left(24 \mathrm{H}, \mathrm{m}, \mathrm{Me}_{3} \mathrm{Si} \times 2\right.$ and $\left.\mathrm{Me}_{2} \mathrm{Si}\right), 0.83\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{3} \mathrm{C}\right), 0.90-1.40(31 \mathrm{H}, \mathrm{m}, \mathrm{Me} \times 9$ and $\left.\mathrm{CH}_{2} \mathrm{Si} \times 2\right), 1.40-2.40\left\{13 \mathrm{H}, 2-\mathrm{H}, 3-\right.$ and $8-\mathrm{H}_{2}, 7-\left(2-\mathrm{H}_{2}\right)$, $7-\left(4-\mathrm{H}_{2}\right), 7-\left[4-\left(5-\mathrm{H}_{2}\right)\right]$ and $\left.7-\left[4-\left(6-\mathrm{H}_{2}\right)\right]\right\}, 2.60-2.75(1 \mathrm{H}, \mathrm{br}$ m, $5-\mathrm{H}), 3.13\left\{\frac{2}{3} \mathrm{H}, \mathrm{s}\right.$, major $\left.7-[4-(2-\mathrm{H})]\right\}, 3.30\left\{\frac{1}{3} \mathrm{H}, \mathrm{s}\right.$, minor $7-[4-(2-\mathrm{H})]\}, 3.35-3.85\left\{8 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}, 7-[4-(4-\mathrm{H})], \mathrm{SiCH}_{2} \mathrm{CH}_{2}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{Me} \times 2\right\}, 3.95-4.25(4 \mathrm{H}, \mathrm{m}, 7-(1-\mathrm{H}), 7-(3-\mathrm{H})$ and $\left.\mathrm{CO}_{2} \mathrm{CH}_{2}\right), 4.50-4.95\left(4 \mathrm{H}, \mathrm{m}, \mathrm{OCH} \mathrm{MeO} \times 2\right.$ and $\left.\mathrm{OCH}_{2} \mathrm{O}\right)$, $6.73\left(\frac{2}{3} \mathrm{H}\right.$, s, major $\left.\mathrm{C}=\mathrm{CH}\right)$ and $6.93\left(\frac{1}{3} \mathrm{H}, \mathrm{s}\right.$, minor $\left.\mathrm{C}=\mathrm{CH}\right)$.

2-(Trimethylsilyl)ethyl 2-\{(1S,2R,4S,5S,7S)-4-Hydroxy-7-\{(1R,3RS)-3-hydroxy-4-\{(1S,2S,4S)-2-hydroxy-3,3-dimethyl-7-oxabicyclo[2.2.1]heptan-1-yl\}-1-[2-(trimethylsilyl)ethoxymethoxy]butyl $\}$-1,2,7-trimethylbicyclo[3.2.1]octan-6-(Z)-ylid-
ene\} acetate $\mathbf{4 0 b}$.-A solution of protected ester $\mathbf{4 0 a}(2.68 \mathrm{~g}, 2.85$ mmol) and PPTS ($210 \mathrm{mg}, 0.84 \mathrm{mmol}$) in methanol ($80 \mathrm{~cm}^{3}$) containing water $\left(4 \mathrm{~cm}^{3}\right)$ was stirred at room temperature. After $2,5,7,10,16,21$ and 30 h , water ($4 \mathrm{~cm}^{3}$ each time) was added to the reaction mixture, which was stirred for 48 h in all before being poured into water and extracted with diethyl ether. The extract was washed successively with water, saturated aq. NaHCO_{3}, and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated under reduced pressure. The residue was chromatographed over SiO_{2} to give compound $\mathbf{4 0 b}(1.61 \mathrm{~g}, 83 \%$) (Found: C, $63.1 ; \mathrm{H}, 9.6$. $\mathrm{C}_{36} \mathrm{H}_{66} \mathrm{O}_{8} \mathrm{Si}_{2}$ requires C, $63.30 ; \mathrm{H}, 9.74 \%$); $[\alpha]_{\mathrm{D}}^{24}+65.1^{\circ}$ (c $\left.1.09, \mathrm{CHCl}_{3}\right) ; v_{\max }($ film $) / \mathrm{cm}^{-1} 3450,1710,1632,1250,1170$, 1160 and 1025. A small amount of compound 40b was further purified by preparative SiO_{2} TLC to give two isomers, whose NMR data are as follows: less polar isomer- $\delta_{\mathrm{H}}(100 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 0.01\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{3} \mathrm{Si}\right), 0.03\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{3} \mathrm{Si}\right), 0.85-1.10$ ($19 \mathrm{H}, \mathrm{m}, \mathrm{Me} \times 5$ and $\mathrm{SiCH}_{2} \times 2$), 1.10-2.45 \{16 H, m, 2-H, 3and $8-\mathrm{H}_{2}, 7-\left(2-\mathrm{H}_{2}\right), 7-\left(4-\mathrm{H}_{2}\right), 7-\left[4-\left(5-\mathrm{H}_{2}\right)\right], 7-\left[4-\left(6-\mathrm{H}_{2}\right)\right]$ and $\mathrm{OH} \times 3\}, 2.62(1 \mathrm{H}, \mathrm{br}, 5-\mathrm{H}), 3.40\{1 \mathrm{H}, \mathrm{brs}, 7-[4-(2-\mathrm{H})]\}, 3.45-$ $4.00\left\{4 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}, 7-[4-(4-\mathrm{H})]\right.$ and $\left.\mathrm{SiCH}_{2} \mathrm{CH}_{2}\right\}, 4.05-4.25[4 \mathrm{H}$, $\mathrm{m}, 7-(1-\mathrm{H}), 7-(3-\mathrm{H})$ and $\left.\mathrm{CO}_{2} \mathrm{CH}_{2}\right], 4.67\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right)$ and $5.92(1 \mathrm{H}, \mathrm{s}, \mathrm{C}=\mathrm{CH})$; more polar isomer- $\delta_{\mathrm{H}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $0.01\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{3} \mathrm{Si}\right), 0.05\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{3} \mathrm{Si}\right), 0.80-1.10(19 \mathrm{H}, \mathrm{m}$, $\mathrm{Me} \times 5$ and $\mathrm{SiCH}_{2} \times 2$), $1.10-2.35\left\{16 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}, 3-\right.$ and $8-\mathrm{H}_{2}$, $7-\left(2-\mathrm{H}_{2}\right), 7-\left(4-\mathrm{H}_{2}\right), 7-\left[4-\left(5-\mathrm{H}_{2}\right)\right], 7-\left[4-\left(6-\mathrm{H}_{2}\right)\right]$ and $\left.\mathrm{OH} \times 3\right\}, 2.62$ ($1 \mathrm{H}, \mathrm{br}, 5-\mathrm{H}), 3.28\{1 \mathrm{H}, \mathrm{br} \mathrm{s}, 7-[4-(2-\mathrm{H})]\}, 3.35-3.75(3 \mathrm{H}, \mathrm{m}, 4-$ H and $\left.\mathrm{SiCH}_{2} \mathrm{CH}_{2}\right), 3.80\{1 \mathrm{H}, \mathrm{br}, 7-[4-(4-\mathrm{H})]\}, 4.05-4.40[4 \mathrm{H}$, $\mathrm{m}, 7-(1-\mathrm{H}), 7-(3-\mathrm{H})$ and $\left.\left.\mathrm{CO}_{2} \mathrm{CH}_{2}\right], 4.75(1 \mathrm{H}, \mathrm{d}, J 7\} \mathrm{OCH} \mathrm{HO}\right)$, $4.85(1 \mathrm{H}, \mathrm{d}, J 7, \mathrm{OCH} H \mathrm{O})$ and $5.89(1 \mathrm{H}, \mathrm{s}, \mathrm{C}=\mathrm{CH})$.

2-(Trimethylsilyl)ethyl 2-\{(1S,2R,4S,7S)-7-\{(R)-4-\{(1S,4S)-3,3-Dimethyl-2-oxo-7-oxabicyclo[2.2.1]heptan-1-yl $\}$-3-oxo-1-[2-(trimethylsilyl) ethoxymethoxy]butyl \}-1,2,7-trimethyl-4-oxo-bicyclo[3.2.1]octan-6(Z)-ylidene\}acetate 41 .-To a stirred solution of oxalyl chloride ($\left.1.43 \mathrm{~cm}^{3}, 16.7 \mathrm{mmol}\right)$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(23$ cm^{3}) at $-78{ }^{\circ} \mathrm{C}$ was added dropwise a solution of DMSO (2.36 $\mathrm{cm}^{3}, 33.2 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under Ar. After the mixture had been stirred for 15 min at $-78^{\circ} \mathrm{C}$, a solution of compound $\mathbf{4 0 b}$ $(2.27 \mathrm{~g}, 3.32 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(18 \mathrm{~cm}^{3}\right)$ was added dropwise to the reaction mixture, and the mixture was stirred for 2 h at $-78^{\circ} \mathrm{C} . \mathrm{Et}_{3} \mathrm{~N}\left(5.10 \mathrm{~cm}^{3}, 36.6 \mathrm{mmol}\right)$ was added dropwise to the resulting suspension at $-78^{\circ} \mathrm{C}$, and the temperature was allowed to rise to $-5^{\circ} \mathrm{C}$ during 10 min . After being stirred at -5 to $0^{\circ} \mathrm{C}$ for 30 min the reaction mixture was poured into water and extracted with diethyl ether. The extract was washed successively with water, saturated aq. NaHCO_{3}, and brine, dried (MgSO_{4}), filtered, and concentrated under reduced pressure. The residue was chromatographed over SiO_{2} to give compound $41(2.15 \mathrm{~g}, 96 \%)$. The product was recrystallized twice from hexane to give pure compound $41(1.93 \mathrm{~g}, 90 \%$ recovery, 86% yield), m.p. $100-100.5^{\circ} \mathrm{C}$ (needles) (Found: C, $64.0 ; \mathrm{H}, 8.9 . \mathrm{C}_{36} \mathrm{H}_{62} \mathrm{O}_{8} \mathrm{Si}_{2}$ requires $\mathrm{C}, 63.87 ; \mathrm{H}, 8.93 \%$); $[\alpha]_{\mathrm{D}}^{24}$ $-2.37^{\circ}\left(c 1.01, \mathrm{CHCl}_{3}\right) ; v_{\max }($ film $) / \mathrm{cm}^{-1} 1750,1728,1714$ and 1634; $\delta_{\mathrm{H}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.00\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{3} \mathrm{Si}\right), 0.02(9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{Me}_{3} \mathrm{Si}\right), 0.80-1.10\left(4 \mathrm{H}, \mathrm{m}, \mathrm{SiCH}_{2}\right), 1.01(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.10(3 \mathrm{H}, \mathrm{d}$, $J 7,2-\mathrm{Me}), 1.21(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.24(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.61(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, $1.30-2.00\left\{7 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}, 8-\mathrm{H}_{2}, 7-\left[4-\left(5-\mathrm{H}_{2}\right)\right]\right.$ and $\left.7-\left[4-\left(6-\mathrm{H}_{2}\right)\right]\right\}$, $2.10-2.90\left[4 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}\right.$ and $\left.7-\left(2-\mathrm{H}_{2}\right)\right], 2.98\left[2 \mathrm{H}, \mathrm{s}, 7-\left(4-\mathrm{H}_{2}\right)\right]$, $3.23(1 \mathrm{H}, \mathrm{d}, J 6,5-\mathrm{H}), 3.54\left(2 \mathrm{H}, \mathrm{m}, \mathrm{SiCH}_{2} \mathrm{CH}_{2}\right), 4.15(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{2}\right), 4.27\{1 \mathrm{H}, \mathrm{br}$ s, $7-[4-(4-\mathrm{H})]\}, 4.61(1 \mathrm{H}, \mathrm{d}, J 7$, OCHHO), $4.63(1 \mathrm{H}, \mathrm{d}, J 7, \mathrm{OCH} H \mathrm{O}), 4.71[1 \mathrm{H}, \mathrm{m}, 7-(1-\mathrm{H})]$ and $5.90(1 \mathrm{H}, \mathrm{d}, J 1, \mathrm{C}=\mathrm{CH})$.

2-(Trimethylsilyl)ethyl 2-\{(1S,2R,5S,8S)-8-\{(R)-4-\{(1S,4S)-3,3-Dimethyl-2-oxo-7-oxabicyclo[2.2.1]heptan-1-yl\}-3-oxo-1-[2-(trimethylsilyl) ethoxymethoxy]butyl \}-1,2,8-trimethyl-4-oxo5 -oxabicyclo[4.2.1]nonan-7(E)-ylidene\}acetate 42.-A mixture of compound $41(1.89 \mathrm{~g}, 2.79 \mathrm{mmol}), m$-chloroperbenzoic acid
(MCPBA) $(80 \%$ purity; $722 \mathrm{mg}, 3.35 \mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(352$ mmol, 4.19 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(100 \mathrm{~cm}^{3}\right)$ was stirred at room temperature for 14 h . The reaction mixture was poured into 10% aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and extracted twice with diethyl ether. The extract was washed successively with saturated aq. $\mathrm{NaHCO}_{3}(\times 3)$ and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated under reduced pressure. The residue was chromatographed over SiO_{2} to give compound $42\left(1.91 \mathrm{~g}, 99 \%\right.$) (Found: C, $62.4 ; \mathrm{H}, 8.7 . \mathrm{C}_{36} \mathrm{H}_{60} \mathrm{O}_{9} \mathrm{Si}_{2}$ requires $\mathrm{C}, 62.39 ; \mathrm{H}, 8.73 \%$); $[\alpha]_{\mathrm{D}}^{23.5}+128^{\circ}\left(c 2.27, \mathrm{CHCl}_{3}\right)$; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} \quad 1765,1740,1728,1645$ and $1180 ; \delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.01\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{3} \mathrm{Si}\right), 0.03\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{3} \mathrm{Si}\right), 0.88$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{SiCH}_{2}\right), 1.01\left(2 \mathrm{H}, \mathrm{m}, \mathrm{SiCH}_{2}\right), 1.02(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.07$ ($3 \mathrm{H}, \mathrm{d}, J 7.1,2-\mathrm{Me}), 1.14(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.26(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.27$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), $1.52(1 \mathrm{H}, \mathrm{d}, J 15.2,9-\mathrm{H}), 1.62\{1 \mathrm{H}, \mathrm{m}, 8-[4-(5-\mathrm{H})]$ or $8-[4-(6-\mathrm{H})]\}, 1.73-1.95\{4 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}, 8-[4-(6-\mathrm{H})]$ or $8-[4-$ $(5-\mathrm{H})]$ and $8-\left[4-\left(6-\mathrm{H}_{2}\right)\right]$ or $\left.8-\left[4-\left(5-\mathrm{H}_{2}\right)\right]\right\}, 2.57(1 \mathrm{H}, \mathrm{dd}, J 2.8$ and $15.3,3-\mathrm{H}), 2.67[1 \mathrm{H}, \mathrm{dd}, J 5.6$ and $18.4,8-(2-\mathrm{H})], 2.83(1 \mathrm{H}$, dd, $J 8.4$ and $15.2,9-\mathrm{H}), 2.88(1 \mathrm{H}$, dd, $J 13.4$ and $15.3,3-\mathrm{H}), 2.98$ $[1 \mathrm{H}, \mathrm{d}, J 16.8,8-(4-\mathrm{H})], 3.03[1 \mathrm{H}, \mathrm{d}, J 16.8,8-(4-\mathrm{H})], 3.37[1 \mathrm{H}$, $\mathrm{dd}, J 4.0$ and $18.4,8-(2-\mathrm{H})], 3.47(1 \mathrm{H}, \mathrm{dt}, J 10.3$ and 8.6 , $\mathrm{SiCH}_{2} \mathrm{CHH}$), $3.52\left(1 \mathrm{H}, \mathrm{dt}, J 10.3\right.$ and $\left.8.6, \mathrm{SiCH}_{2} \mathrm{CHH}\right), 4.20$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CO}_{2} \mathrm{CH}_{2}\right), 4.26[1 \mathrm{H}, \mathrm{dd}, J 4.0$ and $5.6,8-(1-\mathrm{H})], 4.28$ $\{1 \mathrm{H}, \mathrm{d}, J 4.8,8-[4-(4-\mathrm{H})]\}, 4.49(1 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{OCH} \mathrm{HO}), 4.56$ $(1 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{OCH} H \mathrm{O}), 4.92(1 \mathrm{H}, \mathrm{dd}, J 1.5$ and $8.4,6-\mathrm{H})$ and 6.32 ($1 \mathrm{H} . \mathrm{d}, J 1.5, \mathrm{C}=\mathrm{CH}$).

2-(Trimethylsilyl)ethyl (1S,4RS,5RS,7R,7aS)-5-[\{(1S,4S)-3,3-Dimethyl-2-oxo-7-oxabicyclo[2.2.1]heptan-1-yl\}methyl]-2,4,5,-6,7,7a-hexahydro-5-hydroxy-1-[(R)-2-methoxycarbonyl-1-meth-ylethyl]-1,7a-dimethyl-7-[2-(trimethylsilyl)ethoxymethoxy]1 H -indene-4-carboxylate 43.-To a stirred suspension of copper(1) iodide ($2.57 \mathrm{~g}, 13.5 \mathrm{mmol}$) in dry THF ($42 \mathrm{~cm}^{3}$) at -30 C was added $\mathrm{MeLi}\left(1.12 \mathrm{~mol} \mathrm{dm}^{-3}\right.$ in $\mathrm{Et}_{2} \mathrm{O} ; 24.1 \mathrm{~cm}^{3}$, 27.0 mmol) under Ar , and the mixture was stirred for 20 min at -30 to $-20^{\circ} \mathrm{C}$. To the $\mathrm{Me}_{2} \mathrm{CuLi}$ solution at $-78{ }^{\circ} \mathrm{C}$ was added dropwise a solution of compound $42(1.87 \mathrm{~g}, 2.70 \mathrm{mmol})$ in dry THF ($15 \mathrm{~cm}^{3}$). The colour immediately changed to yellow and a precipitate appeared. The yellow suspension was stirred at -78 C for 8 h . The reaction was quenched at $-78^{\circ} \mathrm{C}$ by dropwise addition of a solution of acetic acid $(2.43 \mathrm{~g}, 40.5 \mathrm{mmol})$ in THF $\left(6 \mathrm{~cm}^{3}\right)$. The mixture was poured into saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted three times with diethyl ether. The extract was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated under reduced pressure. The residue (1.99 g) was diluted with diethyl ether ($30 \mathrm{~cm}^{3}$) and to the solution at $0^{\circ} \mathrm{C}$ was added dropwise a solution of diazomethane in diethyl ether until a yellow colour persisted. The mixture was then stirred at $0^{\circ} \mathrm{C}$ for 2 h . Excess of diazomethane was destroyed by addition of acetic acid to the mixture at $0^{\circ} \mathrm{C}$, the resulting ethereal solution was washed with saturated aq. NaHCO_{3}, and the aq. solution was extracted twice with diethyl ether. The combined ethereal solutions were washed successively with saturated aq. NaHCO_{3} and brine, dried (MgSO_{4}), filtered, and concentrated under reduced pressure. The residue was chromatographed over SiO_{2} to give compound 43 as a diastereoisomeric mixture (1.39 $\mathrm{g}, 73 \%$), $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3500,1760,1740,1720,1185,1170$ and $1020 ; \delta_{\mathrm{H}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.01\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{3} \mathrm{Si}\right), 0.05(9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{Me}_{3} \mathrm{Si}\right), 0.85-1.25\left(19 \mathrm{H}, \mathrm{Me} \times 5\right.$ and $\left.\mathrm{SiCH}_{2} \times 2\right), 1.30-2.60$ $\left[12 \mathrm{H}, 6-\mathrm{H}_{2}, 1-(1-\mathrm{H}), 1-\left(2-\mathrm{H}_{2}\right), 5-\mathrm{CH}_{2}, 5-\left(5-\mathrm{H}_{2}\right), 5-\left(6-\mathrm{H}_{2}\right)\right.$ and $\mathrm{OH}], 2.80,2.95$ and 3.04 (total 2 H , br m, $2-\mathrm{H}_{2}$), $3.30(1 \mathrm{H}$, br m, $4-\mathrm{H}), 3.66\left(\frac{3}{2} \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.67\left(\frac{3}{2} \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.40-3.70(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{SiCH}_{2} \mathrm{CH}_{2}\right), 3.86\left(\frac{1}{2} \mathrm{H}\right.$, br m, $\left.7-\mathrm{H}\right), 3.90\left(\frac{1}{2} \mathrm{H}, \mathrm{br} \mathrm{m}, 7-\mathrm{H}\right), 4.10-$ $4.40\left[3 \mathrm{H}, \mathrm{m}, 5-(4-\mathrm{H})\right.$ and $\left.\mathrm{CO}_{2} \mathrm{CH}_{2}\right], 4.50-4.80(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{OCH}_{2} \mathrm{O}\right), 5.58\left(\frac{1}{2} \mathrm{H}\right.$, br m, 3-H) and $5.70\left(\frac{1}{2} \mathrm{H}\right.$, br m, 3-H). This was employed in the next step without further purification.

2-(Trimethylsilyl)ethyl (1S,7R,7aS)-5-[\{(1S,4S)-3,3-

Dimethyl-2-oxo-7-oxabicyclo[2.2.1]heptan-1-yl\}methyl]-2,6,7,7a-
tetrahydro-1-[(R)-2-methoxycarbonyl-1-methylethyl $]-1,7 \mathrm{a}-$ dimethyl-7-[2-(trimethylsilyl)ethoxymethoxy]-1H-indene-4carboxylate $\mathbf{4 4 a}$.-To a cooled, stirred solution of compound 43 $(1.24 \mathrm{~g}, 1.75 \mathrm{mmol})$ in dry pyridine $\left(16 \mathrm{~cm}^{3}\right)$ at $-25^{\circ} \mathrm{C}$ was added dropwise $\mathrm{SOCl}_{2}\left(1.91 \mathrm{~cm}^{3}, 26.2 \mathrm{mmol}\right)$. After the addition, the resulting mixture was stirred for 1.5 h at $-20^{\circ} \mathrm{C}$, poured into stirred ice-water, and extracted with diethyl ether. The extract was washed successively with saturated aq. CuSO_{4}, water, saturated aq. NaHCO_{3}, and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated under reduced pressure. The residue was chromatographed over SiO_{2} to give compound 44 a as an amorphous solid ($990 \mathrm{mg}, 82 \%$) (Found: C, 64.2; H, 8.9. $\mathrm{C}_{37} \mathrm{H}_{62} \mathrm{O}_{8} \mathrm{Si}_{2}$ requires $\mathrm{C}, 64.31 ; \mathrm{H}, 9.04 \%$); $[\alpha]_{\mathrm{D}}^{21}-17.0^{\circ}(c 1.43$, $\left.\mathrm{CHCl}_{3}\right) ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1760,1735,1720$ and $1050 ; \delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.00\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{3} \mathrm{Si}\right), 0.04\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{3} \mathrm{Si}\right), 0.91$ [3 $\mathrm{H}, \mathrm{d}, J 7,1-(1-\mathrm{Me})], 0.93(3 \mathrm{H}, \mathrm{s}, 1-$ or $7 \mathrm{a}-\mathrm{Me}), 0.93(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{SiCH}_{2}\right), 1.01[3 \mathrm{H}, \mathrm{s}, 5-(3-\mathrm{Me})], 1.02(3 \mathrm{H}, \mathrm{s}, 7 \mathrm{a}$ or $1-\mathrm{Me}), 1.17(2$ $\left.\mathrm{H}, \mathrm{m}, \mathrm{SiCH}_{2}\right), 1.16[3 \mathrm{H}, \mathrm{s}, 5-(3-\mathrm{Me})], 1.42[1 \mathrm{H}, \mathrm{ddd}, J 5,9$ and $13,5-(6-\mathrm{H})], 1.69[1 \mathrm{H}, \mathrm{dt}, J 3,10$ and $13,5-(6-\mathrm{H})], 1.78[1 \mathrm{H}, \mathrm{tt}$, $J 5$ and $10,5-(5-\mathrm{H})], 1.88[1 \mathrm{H}$, ddd, $J 3,9$ and $10,5-(5-\mathrm{H})], 1.98$ $(1 \mathrm{H}, \mathrm{dd}, J 3$ and $17,2-\mathrm{H}), 2.14[1 \mathrm{H}, \mathrm{dd}, J 12$ and $15,1-(2-\mathrm{H})]$, $2.34-2.51[5 \mathrm{H}, \mathrm{m}, 2-\mathrm{and} 6-\mathrm{H}, 1-(1-\mathrm{H}), 1-(2-\mathrm{H})$ and $5-\mathrm{CH} \mathrm{H}]$, $2.67(1 \mathrm{H}$, br d, $J 19,6-\mathrm{H}), 3.09(1 \mathrm{H}, \mathrm{d}, J 15,5-\mathrm{CH} H), 3.45(1 \mathrm{H}$, $\mathrm{dt}, J 9$ and $\left.8, \mathrm{SiCH}_{2} \mathrm{CH} \mathrm{H}\right), 3.62(1 \mathrm{H}, \mathrm{dt}, J 9$ and 8 , $\left.\mathrm{SiCH}_{2} \mathrm{CHH}\right), 3.67\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.82(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J 1.5,7-\mathrm{H})$, $4.22[1 \mathrm{H}, \mathrm{d}, J 5,5-(4-\mathrm{H})], 4.29\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CO}_{2} \mathrm{CH}_{2}\right), 4.60(1 \mathrm{H}, \mathrm{d}, J$ 7 , OCHHO), $4.67(1 \mathrm{H}, \mathrm{d}, J 7, \mathrm{OCHHO})$ and $5.59(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J 3$, 3-H).

2-(Trimethylsilyl)ethyl(1S,7R,7aS)-1-[(R)-2-Carboxy-1-methylethyl]-5-[\{(1S,4S)-3,3-dimethyl-2-oxo-7-oxabicyclo-[2.2.1]heptan-1-yl\}methyl]-2,6,7,7a-tetrahydro-1,7a-dimethyl-7-[2-(trimethylsilyl)ethoxymethoxy]-1H-indene-4-carboxylate
44b.-A mixture of diester $44 \mathbf{a}(438 \mathrm{mg}, 634 \mu \mathrm{~mol})$, tetrabutylammonium hydroxide (10% in water; $0.5 \mathrm{~cm}^{3}, 193 \mu \mathrm{~mol}$), THF ($10 \mathrm{~cm}^{3}$) and $1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ aq. $\mathrm{LiOH}\left(5 \mathrm{~cm}^{3}\right)$ was stirred vigorously at room temperature for 30 h . The reaction mixture was acidified to pH 5 (universal indicator) by addition of 1 mol dm^{-3} hydrochloric acid and extracted three times with diethyl ether. The extract was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated under reduced pressure. The residue was chromatographed over SiO_{2} to give acid ester $\mathbf{4 4 b}$ (395 mg , 92%), $[\alpha]_{\mathrm{D}}^{23}-22.4^{\circ}\left(c 0.52, \mathrm{CHCl}_{3}\right) ; v_{\max }(\mathrm{Nujol}) / \mathrm{cm}^{-1} 3150$, 1760,1705 and $1245 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.90-1.00[8 \mathrm{H}, \mathrm{m}, 1-$ (1-Me), 1 - or $7 \mathrm{a}-\mathrm{Me}$ and SiCH_{2}], 1.02 [$\left.3 \mathrm{H}, \mathrm{s}, 5-(3-\mathrm{Me})\right], 1.05$ (3 $\mathrm{H}, \mathrm{s}, 7 \mathrm{a}$ - or $1-\mathrm{Me}), 1.09\left(2 \mathrm{H}, \mathrm{m}, \mathrm{SiCH}_{2}\right), 1.19[3 \mathrm{H}, \mathrm{s}, 5-(3-\mathrm{Me})]$, $1.38-1.95\left[4 \mathrm{H}, \mathrm{m}, 5-\left(6-\mathrm{H}_{2}\right)\right.$ and $\left.5-\left(5-\mathrm{H}_{2}\right)\right], 2.01[1 \mathrm{H}, \mathrm{dd}, J 3$ and $17,2-\mathrm{H}), 2.19(1 \mathrm{H}, \mathrm{dd}, J 12$ and $15,1-(2-\mathrm{H})], 2.34-2.55(5 \mathrm{H}, \mathrm{m}$, $2-$ and $6-\mathrm{H}, 1-(1-\mathrm{H}), 1-(2-\mathrm{H})$ and $5-\mathrm{CH} \mathrm{H}), 2.69(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 19$, $6-\mathrm{H}), 3.08(1 \mathrm{H}, \mathrm{d}, J 15,5-\mathrm{CH} H), 3.48(1 \mathrm{H}, \mathrm{dt}, J 9$ and 8 , $\left.\mathrm{SiCH}_{2} \mathrm{CH} \mathrm{H}\right), 3.63\left(1 \mathrm{H}, \mathrm{dt}, J 9\right.$ and $\left.8, \mathrm{SiCH}_{2} \mathrm{CH} H\right), 3.84(1 \mathrm{H}$, br $\mathrm{t}, J 1.5,7-\mathrm{H}), 4.23[1 \mathrm{H}, \mathrm{d}, J 5,5-(4-\mathrm{H})], 4.31(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{2}\right), 4.62(1 \mathrm{H}, \mathrm{d}, J 7, \mathrm{OCH} \mathrm{HO}), 4.69(1 \mathrm{H}, \mathrm{d}, J 7$, $\mathrm{OCH} H \mathrm{O})$ and $5.61(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J 3,3-\mathrm{H})$. This was employed for the next step without further purification.

Glycinoeclepin A 1.-To a stirred solution of the acid ester $\mathbf{4 4 b}(142 \mathrm{mg}, 0.21 \mathrm{mmol})$ in dry $\mathrm{MeCN}\left(1.5 \mathrm{~cm}^{3}\right)$ was added dropwise $\mathrm{LiBF}_{4}\left(1 \mathrm{~mol} \mathrm{dm}{ }^{-3}\right.$ in $\left.\mathrm{MeCN} ; 0.6 \mathrm{~cm}^{3}, 0.6 \mathrm{mmol}\right)$ under Ar. After the addition, the mixture was stirred at $50^{\circ} \mathrm{C}$ for 24 h , poured into saturated aq. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$, and extracted with EtOAc. The extract was washed with saturated aq. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was diluted with EtOAc, filtered through Celite, and concentrated under reduced pressure to give crude hydroxy acid ester 44c $(128 \mathrm{mg})$, whose TLC analysis showed contamination with a small amount of glycinoeclepin A generated by deprotection of the trimethylsilylethyl ester.

Crude compound $44 \mathrm{c}(124 \mathrm{mg})$ was dissolved in dry MeCN $\left(0.4 \mathrm{~cm}^{3}\right)$, and a solution of tris(dimethylamino)sulphonium difluorotrimethylsiliconate ($2 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ in $\mathrm{MeCN}, 0.42 \mathrm{~cm}^{3}$, 0.84 mmol) was added to the solution at room temperature under Ar. After being stirred at room temperature for 4 h the reaction mixture was poured into water and extracted with $\mathrm{CHCl}_{3}-\mathrm{THF}$ (4:1). The extract was washed with saturated aq. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was diluted in $\mathrm{EtOAc}-\mathrm{CHCl}_{3}(1: 1)$, filtered through Celite, and concentrated under reduced pressure to give crude glycinoeclepin A 1, which was recrystallized from EtOAc to give pure glycinoeclepin $\mathrm{A}(88 \mathrm{mg}, 97 \%$ from 44 b), m.p. 120 $121.5^{\circ} \mathrm{C}$ (needles) (Found: $\mathrm{C}, 67.3 ; \mathrm{H}, 7.65 . \mathrm{C}_{25} \mathrm{H}_{34} \mathrm{O}_{7}$ requires C, $67.24 ; \mathrm{H}, 7.67 \%$); $[\alpha]_{\mathrm{D}}^{20}-10.2^{\circ}(c \quad 0.63, \mathrm{MeOH}) ; v_{\max }-$ (Nujol)/ $\mathrm{cm}^{-1} 3340,2650,1748,1680,1410,1323,1300,1055$, 1020, 948, 928 and $847 ; \delta_{\mathrm{H}}{ }^{*}\left(300 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}\right) 0.99(3 \mathrm{H}, \mathrm{s}$, $18-$ or $\left.28-\mathrm{H}_{3}\right), 1.00\left(3 \mathrm{H}, \mathrm{d}, J 6,21-\mathrm{H}_{3}\right), 1.05(3 \mathrm{H}, \mathrm{s}, 29-$ or $\left.30-\mathrm{H}_{3}\right), 1.16\left(3 \mathrm{H}, \mathrm{s}, 28-\right.$ or $\left.18-\mathrm{H}_{3}\right), 1.20\left(3 \mathrm{H}, \mathrm{s}, 30-\right.$ or $\left.29-\mathrm{H}_{3}\right)$, $1.47(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 1.77(1 \mathrm{H}, \mathrm{dt}, J 3$ and $12,1-\mathrm{H}), 1.84(1 \mathrm{H}, \mathrm{tt}$, $J 5$ and $12,2-\mathrm{H}), 1.94-2.09$ and $2.45-2.60(6 \mathrm{H}, \mathrm{m}, 2-, 11-, 16-$, $19-, 20-$ and $22-\mathrm{H}), 2.16(1 \mathrm{H}$, dd, $J 12$ and $15,22-\mathrm{H}), 2.20(1 \mathrm{H}$, br d, $J 17,16-\mathrm{H}), 2.90(1 \mathrm{H}$, br d, $J 19,11-\mathrm{H}), 3.04(1 \mathrm{H}, \mathrm{d}, J 14.5$, $19-\mathrm{H}), 4.08(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J 2,12-\mathrm{H}), 4.31(1 \mathrm{H}, \mathrm{d}, J 4.8,3-\mathrm{H})$ and $5.66(1 \mathrm{H}$, br s, $15-\mathrm{H})$.

Glycinoeclepin A Bis-(p-bromophenacyl) Ester 45.-To a stirred solution of glycinoeclepin A $1(8.0 \mathrm{mg}, 17.9 \mu \mathrm{~mol})$ and diisopropylethylamine $\left(10 \mathrm{~mm}^{3}\right)$ in dry $\mathrm{MeCN}\left(0.2 \mathrm{~cm}^{3}\right)$ was added p-bromophenacyl bromide ($20 \mathrm{mg}, 72 \mu \mathrm{~mol}$). After 1 h , the reaction mixture was diluted with water and extracted with EtOAc. The extract was directly purified by preparative TLC to give crude diester 45. Recrystallization of the crude product gave pure diester 45 ($14.3 \mathrm{mg}, 95 \%$), m.p. $133.5-134.5^{\circ} \mathrm{C}$ [from hexane-EtOAc ($2: 1$), as plates] [Found: (FAB-MS) $\mathbf{M}+1$ 843.1386. $\mathrm{C}_{41} \mathrm{H}_{45} \mathrm{Br}_{2} \mathrm{O}_{9}$ requires $\left.m / z, 843.1389\right] ;[\alpha]_{\mathrm{D}}^{22}-$ $19.1^{\circ}\left(c 0.57\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3400,1762,1738$, 1702, 1692, $1585,1460,1430,1377,1225,1205,1188,1180,1113$, 1063,978 and $821 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}-\mathrm{D}_{2} \mathrm{O}\right) 0.99(3 \mathrm{H}, \mathrm{s}$, $\left.28-\mathrm{H}_{3}\right), 1.02\left(3 \mathrm{H}, \mathrm{s}, 29-\mathrm{H}_{3}\right), 1.04\left(3 \mathrm{H}, \mathrm{d}, J 6.5,21-\mathrm{H}_{3}\right), 1.15(3 \mathrm{H}$, $\left.\mathrm{s}, 18-\mathrm{H}_{3}\right), 1.17\left(3 \mathrm{H}, \mathrm{s}, 30-\mathrm{H}_{3}\right), 1.55(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 1.67-1.95(3 \mathrm{H}$, $\mathrm{m}, 1-\mathrm{H}$ and $\left.2-\mathrm{H}_{2}\right), 2.08(1 \mathrm{H}$, dd, $J 3.5$ and $17,16-\mathrm{H}), 2.37(1 \mathrm{H}$, dd, $J 11.5$ and $14.5,22-\mathrm{H}), 2.39(1 \mathrm{H}, \mathrm{br}$ d, $J 18,11-\mathrm{H}), 2.47(1 \mathrm{H}$, br d, $J 17,16-\mathrm{H}), 2.58(1 \mathrm{H}, \mathrm{m}, 20-\mathrm{H}), 2.64(1 \mathrm{H}$, br d, $J 14.5$, $22-\mathrm{H}), 2.85(1 \mathrm{H}, \mathrm{d}, J 14.5,19-\mathrm{H}), 2.88(1 \mathrm{H}$, br d, $J 18,11-\mathrm{H})$, $3.00(1 \mathrm{H}, \mathrm{d}, J 14.5,19-\mathrm{H}), 4.07(1 \mathrm{H}$, br t, $J 2,12-\mathrm{H}), 4.26(1 \mathrm{H}, \mathrm{d}$, $J 5,3-\mathrm{H}), 5.28(1 \mathrm{H}, \mathrm{d}, J 16.5, \mathrm{CH} \mathrm{HCOAr}), 5.32(1 \mathrm{H}, \mathrm{d}, J 16.5$, CHHCOAr), 5.36 (1 H, d, J 16.5, CHHCOAr), 5.51 (1 H, d, J 16.5, СН H COAr), $6.08(1 \mathrm{H}, \mathrm{br}, 15-\mathrm{H}), 7.645(2 \mathrm{H}, \mathrm{d}, J 8.5$, $\operatorname{ArH}), 7.655(2 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{ArH}), 7.79(2 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{ArH})$ and 7.83 ($2 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{ArH}$); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 16.4,18.6,19.3,20.0$, $22.9,25.2,29.7,33.6,35.3,38.2,41.1,46.2,48.9,51.4,53.5,65.7$, $66.1,71.5,83.7,88.6,126.7,127.4,129.1,129.27,129.33,132.2$, $133.0,133.8,139.1,167.1,172.9,191.2,191.4$ and 217.1.

Acknowledgements

We thank Prof. A. Murai of Hokkaido University for the bioassay of our synthetic sample. This work was supported by a Grant-in-Aid for Scientific Research from Japanese Ministry of Education, Science and Culture.

References

1 Part 1, K. Mori and H. Tamura, Liebigs Ann. Chem., 1990, 361.
2 A. Fukuzawa, A. Furusaki, M. Ikura and T. Masamune, J. Chem. Soc., Chem. Commun., 1985, 222; T. Masamune, M. Anetai, A. Fukuzawa, M. Takasugi, H. Matsue, K. Kobayashi, S. Ueno and N. Katsui, Bull. Chem. Soc. Jpn., 1987, 60, 981; T. Masamune, A. Fukuzawa, A. Furusaki, M. Ikura, H. Matsue, T. Kaneko, A. Abiko, N. Sakamoto, N. Tanimoto and A. Murai, Bull. Chem. Soc. Jpn., 1987, 60, 1001.
3 A. Murai, N. Tanimoto, N. Sakamoto and T. Masamune, J. Am. Chem. Soc., 1988, 110, 1985.
4 K. Mori and H. Watanabe, Pure Appl. Chem., 1989, 61, 543.
5 E. J. Corey and I. N. Houpis, J. Am. Chem. Soc., 1990, 112, 8997.

6 H. Okawara, Y. Nii, A. Miwa and M. Sakakibara, Tetrahedron Lett., 1987, 28, 2597, A. Miwa, Y. Nii, H. Okawara and M. Sakakibara, Agric. Biol. Chem., 1987, 51, 3459.
7 H. Sasai and K. Sakai, Abstracts of Papers, 54th Annual Meeting of Chemical Society of Japan, April, 1987, p. 1117; K. Sakai, H. Sasai, T. Fujimoto, T. Nukano and K. Takahashi, Abstracts of 16th International Symposium on the Chemistry of Natural Products (IUPAC), K yoto, 1988, p. 388.
8 K. Mori and H. Mori, Org. Synth., 1989, 68, 56, and references cited therein.
9 K. Mori and H. Takaishi, Liebigs Ann. Chem., 1989, 939
10 K. Mori and N. Suzuki, Liebigs Ann. Chem., 1990, 287.
11 K. Mori and E. Nagano, Biocatalysis, 1990, 3, 25.
12 T. Kitahara, M. Miyake, M. Kido and K. Mori, Tetrahedron Asymmetry, 1990, 1, 775.
13 K. Mori and H. Watanabe, Tetrahedron, 1986, 42, 273.
14 K. Omura and D. Swern, Tetrahedron, 1978, 34, 1651; A. J. Mancuso, S. L. Huang and D. Swern, J. Org. Chem., 1978, 43, 2480.

15 G. B. Kauffman and L. A. Teter, Inorg. Synth., 1963, 7, 9.
16 S. Danishefsky, K. Vaughan, R. Gadwood and T. Tsuzuki, J. Am. Chem. Soc., 1981, 103, 4136.
17 A. Hosomi and H. Sakurai, J. Am. Chem. Soc., 1977, 99, 1673.
18 J. Herscovici and K. Antonakis, J. Chem. Soc., Chem. Commun., 1980, 561.
19 E. Bunnenberg, C. Djerassi, K. Mislow and A. Miscowitz, J. Am. Chem. Soc., 1962, 84, 2823.
20 J. A. Dale and H. S. Mosher, J. Am. Chem. Soc., 1973, 95, 512.
21 R. Grewe and A. Struve, Chem. Ber., 1963, 96, 2819.
22 K. Mori, T. Yoshimura and T. Sugai, Liebigs Ann. Chem., 1988, 899.

23 Recently, Kibayashi has reported the usefulness of this protective group; N. Machinaga and C. Kibayashi, Tetrahedron Lett., 1989, 30, 4165.

24 H. Taguchi, H. Yamamoto and H. Nozaki, J. Am. Chem. Soc., 1974. 96, 6510; Tetrahedron Lett., 1976, 2617.
25 H. O. House, D. S. Crumline, A. Y. Teranishi and H. D. Olmstead, J. Am. Chem. Soc., 1973, 95, 3310.
26 A. Hajós and O. Fuchs, Acta Chim. Acad. Sci. Hung., 1959, 21, 137.

27 C. Kaneko, A. Sugimoto, Y. Eguchi, S. Yamada, M. Ishikawa, S. Sasaki and T. Suda, Tetrahedron, 1974, 30, 2701.
28 B. H. Lipshutz and J. J. Pegram, Tetrahedron Lett., 1980, 21, 3343.

29 B. S. Bal, W. E. Childers, Jr., and H. W. Pinnick, Tetrahedron, 1981, 37, 2091.
30 O. Mitsunobu, Synthesis, 1981, 1.
31 N. L. Holy, Chem. Rev., 1974, 74, 243.
32 R. A. Ruden and W. E. Litterer, Tetrahedron Lett., 1975, 2043.
33 S. Takano, Y. Sekiguchi and K. Ogasawara, J. Chem. Soc., Chem. Commun., 1988, 449.
34 B. H. Lipshutz, J. J. Pegram and M. C. Morey, Tetrahedron Lett., 1981, 22, 4603.
35 T. V. RajanBabu, J. Org. Chem., 1984, 49, 2083.

Paper 1/03466I
Received 9th July 1991

[^3]
[^0]: + Submitted to mark the 150th anniversary of the Chemical Society/Royal Society of Chemistry.

[^1]: * Non-systematic name.

[^2]: * NMR locants are presented throughout with the bicyclooctane ring system as the base component.

[^3]: * NMR locants given in structure 1, Scheme 1.

